
68

Introduction to Keras
and TensorFlow

This chapter is meant to give you everything you need to start doing deep learning
in practice. I’ll give you a quick presentation of Keras (https://keras.io) and Tensor-
Flow (https://tensorflow.org), the Python-based deep learning tools that we’ll use
throughout the book. You’ll find out how to set up a deep learning workspace, with
TensorFlow, Keras, and GPU support. Finally, building on top of the first contact
you had with Keras and TensorFlow in chapter 2, we’ll review the core components
of neural networks and how they translate to the Keras and TensorFlow APIs.

 By the end of this chapter, you’ll be ready to move on to practical, real-world
applications, which will start with chapter 4.

This chapter covers
 A closer look at TensorFlow, Keras, and their

relationship

 Setting up a deep learning workspace

 An overview of how core deep learning concepts
translate to Keras and TensorFlow

https://keras.io
https://tensorflow.org

69What’s Keras?

3.1 What’s TensorFlow?
TensorFlow is a Python-based, free, open source machine learning platform, devel-
oped primarily by Google. Much like NumPy, the primary purpose of TensorFlow is to
enable engineers and researchers to manipulate mathematical expressions over
numerical tensors. But TensorFlow goes far beyond the scope of NumPy in the follow-
ing ways:

 It can automatically compute the gradient of any differentiable expression (as
you saw in chapter 2), making it highly suitable for machine learning.

 It can run not only on CPUs, but also on GPUs and TPUs, highly parallel hard-
ware accelerators.

 Computation defined in TensorFlow can be easily distributed across many
machines.

 TensorFlow programs can be exported to other runtimes, such as C++, Java-
Script (for browser-based applications), or TensorFlow Lite (for applications
running on mobile devices or embedded devices), etc. This makes TensorFlow
applications easy to deploy in practical settings.

It’s important to keep in mind that TensorFlow is much more than a single library. It’s
really a platform, home to a vast ecosystem of components, some developed by Google
and some developed by third parties. For instance, there’s TF-Agents for reinforce-
ment-learning research, TFX for industry-strength machine learning workflow man-
agement, TensorFlow Serving for production deployment, and there’s the TensorFlow
Hub repository of pretrained models. Together, these components cover a very wide
range of use cases, from cutting-edge research to large-scale production applications.

 TensorFlow scales fairly well: for instance, scientists from Oak Ridge National Lab
have used it to train a 1.1 exaFLOPS extreme weather forecasting model on the
27,000 GPUs of the IBM Summit supercomputer. Likewise, Google has used Tensor-
Flow to develop very compute-intensive deep learning applications, such as the chess-
playing and Go-playing agent AlphaZero. For your own models, if you have the bud-
get, you can realistically hope to scale to around 10 petaFLOPS on a small TPU pod or
a large cluster of GPUs rented on Google Cloud or AWS. That would still be around
1% of the peak compute power of the top supercomputer in 2019!

3.2 What’s Keras?
Keras is a deep learning API for Python, built on top of TensorFlow, that provides a con-
venient way to define and train any kind of deep learning model. Keras was initially
developed for research, with the aim of enabling fast deep learning experimentation.

 Through TensorFlow, Keras can run on top of different types of hardware (see fig-
ure 3.1)—GPU, TPU, or plain CPU—and can be seamlessly scaled to thousands of
machines.

 Keras is known for prioritizing the developer experience. It’s an API for human
beings, not machines. It follows best practices for reducing cognitive load: it offers

70 CHAPTER 3 Introduction to Keras and TensorFlow

consistent and simple workflows, it minimizes the number of actions required for com-
mon use cases, and it provides clear and actionable feedback upon user error. This
makes Keras easy to learn for a beginner, and highly productive to use for an expert.

 Keras has well over a million users as of late 2021, ranging from academic research-
ers, engineers, and data scientists at both startups and large companies to graduate
students and hobbyists. Keras is used at Google, Netflix, Uber, CERN, NASA, Yelp,
Instacart, Square, and hundreds of startups working on a wide range of problems
across every industry. Your YouTube recommendations originate from Keras models.
The Waymo self-driving cars are developed with Keras models. Keras is also a popular
framework on Kaggle, the machine learning competition website, where most deep
learning competitions have been won using Keras.

 Because Keras has a large and diverse user base, it doesn’t force you to follow a sin-
gle “true” way of building and training models. Rather, it enables a wide range of dif-
ferent workflows, from the very high level to the very low level, corresponding to
different user profiles. For instance, you have an array of ways to build models and an
array of ways to train them, each representing a certain trade-off between usability and
flexibility. In chapter 5, we’ll review in detail a good fraction of this spectrum of work-
flows. You could be using Keras like you would use Scikit-learn—just calling fit() and
letting the framework do its thing—or you could be using it like NumPy—taking full
control of every little detail.

 This means that everything you’re learning now as you’re getting started will still
be relevant once you’ve become an expert. You can get started easily and then gradu-
ally dive into workflows where you’re writing more and more logic from scratch. You
won’t have to switch to an entirely different framework as you go from student to
researcher, or from data scientist to deep learning engineer.

 This philosophy is not unlike that of Python itself! Some languages only offer one
way to write programs—for instance, object-oriented programming or functional pro-
gramming. Meanwhile, Python is a multiparadigm language: it offers an array of possi-
ble usage patterns that all work nicely together. This makes Python suitable to a wide
range of very different use cases: system administration, data science, machine learning

CPU GPU TPU

TensorFlow

Keras

Deep learning development:

layers, models, optimizers, losses,

metrics...

Tensor manipulation infrastructure:

tensors, variables, automatic

differentiation, distribution...

Hardware: execution

Figure 3.1 Keras and TensorFlow: TensorFlow is a low-level tensor computing
platform, and Keras is a high-level deep learning API

71Setting up a deep learning workspace

engineering, web development . . . or just learning how to program. Likewise, you can
think of Keras as the Python of deep learning: a user-friendly deep learning language
that offers a variety of workflows to different user profiles.

3.3 Keras and TensorFlow: A brief history
Keras predates TensorFlow by eight months. It was released in March 2015, and
TensorFlow was released in November 2015. You may ask, if Keras is built on top
of TensorFlow, how it could exist before TensorFlow was released? Keras was originally
built on top of Theano, another tensor-manipulation library that provided automatic
differentiation and GPU support—the earliest of its kind. Theano, developed at the
Montréal Institute for Learning Algorithms (MILA) at the Université de Montréal,
was in many ways a precursor of TensorFlow. It pioneered the idea of using static com-
putation graphs for automatic differentiation and for compiling code to both CPU
and GPU.

 In late 2015, after the release of TensorFlow, Keras was refactored to a multiback-
end architecture: it became possible to use Keras with either Theano or TensorFlow,
and switching between the two was as easy as changing an environment variable. By
September 2016, TensorFlow had reached a level of technical maturity where it became
possible to make it the default backend option for Keras. In 2017, two new addi-
tional backend options were added to Keras: CNTK (developed by Microsoft) and
MXNet (developed by Amazon). Nowadays, both Theano and CNTK are out of devel-
opment, and MXNet is not widely used outside of Amazon. Keras is back to being a
single-backend API—on top of TensorFlow.

 Keras and TensorFlow have had a symbiotic relationship for many years. Through-
out 2016 and 2017, Keras became well known as the user-friendly way to develop Ten-
sorFlow applications, funneling new users into the TensorFlow ecosystem. By late
2017, a majority of TensorFlow users were using it through Keras or in combination
with Keras. In 2018, the TensorFlow leadership picked Keras as TensorFlow’s official
high-level API. As a result, the Keras API is front and center in TensorFlow 2.0,
released in September 2019—an extensive redesign of TensorFlow and Keras that
takes into account over four years of user feedback and technical progress.

 By this point, you must be eager to start running Keras and TensorFlow code in
practice. Let’s get you started.

3.4 Setting up a deep learning workspace
Before you can get started developing deep learning applications, you need to set up
your development environment. It’s highly recommended, although not strictly nec-
essary, that you run deep learning code on a modern NVIDIA GPU rather than your
computer’s CPU. Some applications—in particular, image processing with convolu-
tional networks—will be excruciatingly slow on CPU, even a fast multicore CPU. And
even for applications that can realistically be run on CPU, you’ll generally see the
speed increase by a factor of 5 or 10 by using a recent GPU.

72 CHAPTER 3 Introduction to Keras and TensorFlow

 To do deep learning on a GPU, you have three options:

 Buy and install a physical NVIDIA GPU on your workstation.
 Use GPU instances on Google Cloud or AWS EC2.
 Use the free GPU runtime from Colaboratory, a hosted notebook service

offered by Google (for details about what a “notebook” is, see the next section).

Colaboratory is the easiest way to get started, as it requires no hardware purchase and
no software installation—just open a tab in your browser and start coding. It’s the
option we recommend for running the code examples in this book. However, the free
version of Colaboratory is only suitable for small workloads. If you want to scale up,
you’ll have to use the first or second option.

 If you don’t already have a GPU that you can use for deep learning (a recent, high-
end NVIDIA GPU), then running deep learning experiments in the cloud is a simple,
low-cost way for you to move to larger workloads without having to buy any additional
hardware. If you’re developing using Jupyter notebooks, the experience of running in
the cloud is no different from running locally.

 But if you’re a heavy user of deep learning, this setup isn’t sustainable in the long
term—or even for more than a few months. Cloud instances aren’t cheap: you’d pay
$2.48 per hour for a V100 GPU on Google Cloud in mid-2021. Meanwhile, a solid
consumer-class GPU will cost you somewhere between $1,500 and $2,500—a price
that has been fairly stable over time, even as the specs of these GPUs keep improving.
If you’re a heavy user of deep learning, consider setting up a local workstation with
one or more GPUs.

 Additionally, whether you’re running locally or in the cloud, it’s better to be using
a Unix workstation. Although it’s technically possible to run Keras on Windows
directly, we don’t recommend it. If you’re a Windows user and you want to do deep
learning on your own workstation, the simplest solution to get everything running is
to set up an Ubuntu dual boot on your machine, or to leverage Windows Subsystem
for Linux (WSL), a compatibility layer that enables you to run Linux applications
from Windows. It may seem like a hassle, but it will save you a lot of time and trouble
in the long run.

3.4.1 Jupyter notebooks: The preferred way to run deep learning
experiments

Jupyter notebooks are a great way to run deep learning experiments—in particular,
the many code examples in this book. They’re widely used in the data science and
machine learning communities. A notebook is a file generated by the Jupyter Notebook
app (https://jupyter.org) that you can edit in your browser. It mixes the ability to exe-
cute Python code with rich text-editing capabilities for annotating what you’re doing. A
notebook also allows you to break up long experiments into smaller pieces that can be
executed independently, which makes development interactive and means you don’t
have to rerun all of your previous code if something goes wrong late in an experiment.

https://jupyter.org

73Setting up a deep learning workspace

 I recommend using Jupyter notebooks to get started with Keras, although that isn’t
a requirement: you can also run standalone Python scripts or run code from within an
IDE such as PyCharm. All the code examples in this book are available as open source
notebooks; you can download them from GitHub at github.com/fchollet/deep-
learning-with-python-notebooks.

3.4.2 Using Colaboratory

Colaboratory (or Colab for short) is a free Jupyter notebook service that requires no
installation and runs entirely in the cloud. Effectively, it’s a web page that lets you
write and execute Keras scripts right away. It gives you access to a free (but limited)
GPU runtime and even a TPU runtime, so you don’t have to buy your own GPU.
Colaboratory is what we recommend for running the code examples in this book.

FIRST STEPS WITH COLABORATORY

To get started with Colab, go to https://colab.research.google.com and click the New
Notebook button. You’ll see the standard Notebook interface shown in figure 3.2.

You’ll notice two buttons in the toolbar: + Code and + Text. They’re for creating exe-
cutable Python code cells and annotation text cells, respectively. After entering code
in a code cell, Pressing Shift-Enter will execute it (see figure 3.3).

 In a text cell, you can use Markdown syntax (see figure 3.4). Pressing Shift-Enter
on a text cell will render it.

 Text cells are useful for giving a readable structure to your notebooks: use them to
annotate your code with section titles and long explanation paragraphs or to embed
figures. Notebooks are meant to be a multimedia experience!

Figure 3.2 A Colab notebook

http://github.com/fchollet/deep-learning-with-python-notebooks
http://github.com/fchollet/deep-learning-with-python-notebooks
https://colab.research.google.com

74 CHAPTER 3 Introduction to Keras and TensorFlow

INSTALLING PACKAGES WITH PIP

The default Colab environment already comes with TensorFlow and Keras installed,
so you can start using it right away without any installation steps required. But if you
ever need to install something with pip, you can do so by using the following syntax in
a code cell (note that the line starts with ! to indicate that it is a shell command rather
than Python code):

!pip install package_name

Figure 3.3 Creating a code cell

Figure 3.4 Creating a text cell

75First steps with TensorFlow

USING THE GPU RUNTIME

To use the GPU runtime with Colab, select Runtime > Change Runtime Type in the
menu and select GPU for the Hardware Accelerator (see figure 3.5).

TensorFlow and Keras will automatically execute on GPU if a GPU is available, so
there’s nothing more you need to do after you’ve selected the GPU runtime.

 You’ll notice that there’s also a TPU runtime option in that Hardware Accelerator
dropdown menu. Unlike the GPU runtime, using the TPU runtime with TensorFlow
and Keras does require a bit of manual setup in your code. We’ll cover this in chap-
ter 13. For the time being, we recommend that you stick to the GPU runtime to follow
along with the code examples in the book.

 You now have a way to start running Keras code in practice. Next, let’s see how the
key ideas you learned about in chapter 2 translate to Keras and TensorFlow code.

3.5 First steps with TensorFlow
As you saw in the previous chapters, training a neural network revolves around the fol-
lowing concepts:

 First, low-level tensor manipulation—the infrastructure that underlies all mod-
ern machine learning. This translates to TensorFlow APIs:
– Tensors, including special tensors that store the network’s state (variables)
– Tensor operations such as addition, relu, matmul

Figure 3.5 Using the GPU runtime with Colab

76 CHAPTER 3 Introduction to Keras and TensorFlow

– Backpropagation, a way to compute the gradient of mathematical expressions
(handled in TensorFlow via the GradientTape object)

 Second, high-level deep learning concepts. This translates to Keras APIs:
– Layers, which are combined into a model
– A loss function, which defines the feedback signal used for learning
– An optimizer, which determines how learning proceeds
– Metrics to evaluate model performance, such as accuracy
– A training loop that performs mini-batch stochastic gradient descent

In the previous chapter, you already had a first light contact with some of the corre-
sponding TensorFlow and Keras APIs: you’ve briefly used TensorFlow’s Variable class,
the matmul operation, and the GradientTape. You’ve instantiated Keras Dense layers,
packed them into a Sequential model, and trained that model with the fit()
method.

 Now let’s take a deeper dive into how all of these different concepts can be
approached in practice using TensorFlow and Keras.

3.5.1 Constant tensors and variables

To do anything in TensorFlow, we’re going to need some tensors. Tensors need to be
created with some initial value. For instance, you could create all-ones or all-zeros ten-
sors (see listing 3.1), or tensors of values drawn from a random distribution (see list-
ing 3.2).

>>> import tensorflow as tf
>>> x = tf.ones(shape=(2, 1))
>>> print(x)
tf.Tensor(
[[1.]
 [1.]], shape=(2, 1), dtype=float32)
>>> x = tf.zeros(shape=(2, 1))
>>> print(x)
tf.Tensor(
[[0.]
 [0.]], shape=(2, 1), dtype=float32)

>>> x = tf.random.normal(shape=(3, 1), mean=0., stddev=1.)
>>> print(x)
tf.Tensor(
[[-0.14208166]
 [-0.95319825]
 [1.1096532]], shape=(3, 1), dtype=float32)
>>> x = tf.random.uniform(shape=(3, 1), minval=0., maxval=1.)
>>> print(x)
tf.Tensor(

Listing 3.1 All-ones or all-zeros tensors

Listing 3.2 Random tensors

Equivalent to
np.ones(shape=(2, 1))

Equivalent to
np.zeros(shape=(2, 1))

Tensor of random values drawn from a normal distribution
with mean 0 and standard deviation 1. Equivalent to

np.random.normal(size=(3, 1), loc=0., scale=1.).

Tensor of random values drawn from a uniform distribution between 0
and 1. Equivalent to np.random.uniform(size=(3, 1), low=0., high=1.).

77First steps with TensorFlow

[[0.33779848]
 [0.06692922]
 [0.7749394]], shape=(3, 1), dtype=float32)

A significant difference between NumPy arrays and TensorFlow tensors is that Tensor-
Flow tensors aren’t assignable: they’re constant. For instance, in NumPy, you can do
the following.

import numpy as np
x = np.ones(shape=(2, 2))
x[0, 0] = 0.

Try to do the same thing in TensorFlow, and you will get an error: “EagerTensor object
does not support item assignment.”

x = tf.ones(shape=(2, 2))
x[0, 0] = 0.

To train a model, we’ll need to update its state, which is a set of tensors. If tensors
aren’t assignable, how do we do it? That’s where variables come in. tf.Variable is the
class meant to manage modifiable state in TensorFlow. You’ve already briefly seen it in
action in the training loop implementation at the end of chapter 2.

 To create a variable, you need to provide some initial value, such as a random tensor.

>>> v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
>>> print(v)
array([[-0.75133973],
 [-0.4872893],
 [1.6626885]], dtype=float32)>

The state of a variable can be modified via its assign method, as follows.

>>> v.assign(tf.ones((3, 1)))
array([[1.],
 [1.],
 [1.]], dtype=float32)>

It also works for a subset of the coefficients.

Listing 3.3 NumPy arrays are assignable

Listing 3.4 TensorFlow tensors are not assignable

Listing 3.5 Creating a TensorFlow variable

Listing 3.6 Assigning a value to a TensorFlow variable

This will fail, as a
tensor isn’t assignable.

78 CHAPTER 3 Introduction to Keras and TensorFlow

>>> v[0, 0].assign(3.)
array([[3.],
 [1.],
 [1.]], dtype=float32)>

Similarly, assign_add() and assign_sub() are efficient equivalents of += and -=, as
shown next.

>>> v.assign_add(tf.ones((3, 1)))
array([[2.],
 [2.],
 [2.]], dtype=float32)>

3.5.2 Tensor operations: Doing math in TensorFlow

Just like NumPy, TensorFlow offers a large collection of tensor operations to express
mathematical formulas. Here are a few examples.

a = tf.ones((2, 2))
b = tf.square(a)
c = tf.sqrt(a)
d = b + c
e = tf.matmul(a, b)
e *= d

Importantly, each of the preceding operations gets executed on the fly: at any point,
you can print what the current result is, just like in NumPy. We call this eager execution.

3.5.3 A second look at the GradientTape API

So far, TensorFlow seems to look a lot like NumPy. But here’s something NumPy can’t
do: retrieve the gradient of any differentiable expression with respect to any of its
inputs. Just open a GradientTape scope, apply some computation to one or several
input tensors, and retrieve the gradient of the result with respect to the inputs.

input_var = tf.Variable(initial_value=3.)
with tf.GradientTape() as tape:
 result = tf.square(input_var)
gradient = tape.gradient(result, input_var)

Listing 3.7 Assigning a value to a subset of a TensorFlow variable

Listing 3.8 Using assign_add()

Listing 3.9 A few basic math operations

Listing 3.10 Using the GradientTape

Take the square.

Take the square root.

Add two tensors (element-wise).

Take the product of two tensors
(as discussed in chapter 2).Multiply two tensors

(element-wise).

79First steps with TensorFlow

This is most commonly used to retrieve the gradients of the loss of a model with
respect to its weights: gradients = tape.gradient(loss, weights). You saw this in
action in chapter 2.

 So far, you’ve only seen the case where the input tensors in tape.gradient() were
TensorFlow variables. It’s actually possible for these inputs to be any arbitrary tensor.
However, only trainable variables are tracked by default. With a constant tensor, you’d
have to manually mark it as being tracked by calling tape.watch() on it.

input_const = tf.constant(3.)
with tf.GradientTape() as tape:
 tape.watch(input_const)
 result = tf.square(input_const)
gradient = tape.gradient(result, input_const)

Why is this necessary? Because it would be too expensive to preemptively store the
information required to compute the gradient of anything with respect to anything.
To avoid wasting resources, the tape needs to know what to watch. Trainable variables
are watched by default because computing the gradient of a loss with regard to a list of
trainable variables is the most common use of the gradient tape.

 The gradient tape is a powerful utility, even capable of computing second-order gra-
dients, that is to say, the gradient of a gradient. For instance, the gradient of the posi-
tion of an object with regard to time is the speed of that object, and the second-order
gradient is its acceleration.

 If you measure the position of a falling apple along a vertical axis over time and
find that it verifies position(time) = 4.9 * time ** 2, what is its acceleration? Let’s
use two nested gradient tapes to find out.

time = tf.Variable(0.)
with tf.GradientTape() as outer_tape:
 with tf.GradientTape() as inner_tape:
 position = 4.9 * time ** 2
 speed = inner_tape.gradient(position, time)
acceleration = outer_tape.gradient(speed, time)

3.5.4 An end-to-end example: A linear classifier in pure TensorFlow

You know about tensors, variables, and tensor operations, and you know how to com-
pute gradients. That’s enough to build any machine learning model based on gradi-
ent descent. And you’re only at chapter 3!

 In a machine learning job interview, you may be asked to implement a linear classi-
fier from scratch in TensorFlow: a very simple task that serves as a filter between candi-
dates who have some minimal machine learning background and those who don’t.

Listing 3.11 Using GradientTape with constant tensor inputs

Listing 3.12 Using nested gradient tapes to compute second-order gradients

We use the outer tape to
compute the gradient of
the gradient from the inner
tape. Naturally, the answer
is 4.9 * 2 = 9.8.

80 CHAPTER 3 Introduction to Keras and TensorFlow

Let’s get you past that filter and use your newfound knowledge of TensorFlow to
implement such a linear classifier.

 First, let’s come up with some nicely linearly separable synthetic data to work with:
two classes of points in a 2D plane. We’ll generate each class of points by drawing their
coordinates from a random distribution with a specific covariance matrix and a spe-
cific mean. Intuitively, the covariance matrix describes the shape of the point cloud,
and the mean describes its position in the plane (see figure 3.6). We’ll reuse the same
covariance matrix for both point clouds, but we’ll use two different mean values—the
point clouds will have the same shape, but different positions.

num_samples_per_class = 1000
negative_samples = np.random.multivariate_normal(
 mean=[0, 3],
 cov=[[1, 0.5],[0.5, 1]],
 size=num_samples_per_class)
positive_samples = np.random.multivariate_normal(
 mean=[3, 0],
 cov=[[1, 0.5],[0.5, 1]],
 size=num_samples_per_class)

In the preceding code, negative_samples and positive_samples are both arrays
with shape (1000, 2). Let’s stack them into a single array with shape (2000, 2).

inputs = np.vstack((negative_samples, positive_samples)).astype(np.float32)

Let’s generate the corresponding target labels, an array of zeros and ones of shape
(2000, 1), where targets[i, 0] is 0 if inputs[i] belongs to class 0 (and inversely).

targets = np.vstack((np.zeros((num_samples_per_class, 1), dtype="float32"),
 np.ones((num_samples_per_class, 1), dtype="float32")))

Next, let’s plot our data with Matplotlib.

import matplotlib.pyplot as plt
plt.scatter(inputs[:, 0], inputs[:, 1], c=targets[:, 0])
plt.show()

Listing 3.13 Generating two classes of random points in a 2D plane

Listing 3.14 Stacking the two classes into an array with shape (2000, 2)

Listing 3.15 Generating the corresponding targets (0 and 1)

Listing 3.16 Plotting the two point classes (see figure 3.6)

Generate the first class of points:
1000 random 2D points. cov=[[1,
0.5],[0.5, 1]] corresponds to an
oval-like point cloud oriented
from bottom left to top right.

Generate the other class of
points with a different mean and
the same covariance matrix.

81First steps with TensorFlow

Now let’s create a linear classifier that can learn to separate these two blobs. A linear
classifier is an affine transformation (prediction = W • input + b) trained to minimize
the square of the difference between predictions and the targets.

 As you’ll see, it’s actually a much simpler example than the end-to-end example of
a toy two-layer neural network you saw at the end of chapter 2. However, this time you
should be able to understand everything about the code, line by line.

 Let’s create our variables, W and b, initialized with random values and with zeros,
respectively.

input_dim = 2
output_dim = 1
W = tf.Variable(initial_value=tf.random.uniform(shape=(input_dim, output_dim)))
b = tf.Variable(initial_value=tf.zeros(shape=(output_dim,)))

Here’s our forward pass function.

def model(inputs):
 return tf.matmul(inputs, W) + b

Because our linear classifier operates on 2D inputs, W is really just two scalar coeffi-
cients, w1 and w2: W = [[w1], [w2]]. Meanwhile, b is a single scalar coefficient. As such,
for a given input point [x, y], its prediction value is prediction = [[w1], [w2]] • [x,
y] + b = w1 * x + w2 * y + b.

The following listing shows our loss function.

Listing 3.17 Creating the linear classifier variables

Listing 3.18 The forward pass function

Figure 3.6 Our synthetic
data: two classes of random
points in the 2D plane

The inputs will
be 2D points.

The output predictions will be a single score per
sample (close to 0 if the sample is predicted to
be in class 0, and close to 1 if the sample is
predicted to be in class 1).

82 CHAPTER 3 Introduction to Keras and TensorFlow

def square_loss(targets, predictions):
 per_sample_losses = tf.square(targets - predictions)
 return tf.reduce_mean(per_sample_losses)

Next is the training step, which receives some training data and updates the weights W
and b so as to minimize the loss on the data.

learning_rate = 0.1

def training_step(inputs, targets):
 with tf.GradientTape() as tape:
 predictions = model(inputs)
 loss = square_loss(predictions, targets)
 grad_loss_wrt_W, grad_loss_wrt_b = tape.gradient(loss, [W, b])
 W.assign_sub(grad_loss_wrt_W * learning_rate)
 b.assign_sub(grad_loss_wrt_b * learning_rate)
 return loss

For simplicity, we’ll do batch training instead of mini-batch training: we’ll run each training
step (gradient computation and weight update) for all the data, rather than iterate over
the data in small batches. On one hand, this means that each training step will take
much longer to run, since we’ll compute the forward pass and the gradients for 2,000
samples at once. On the other hand, each gradient update will be much more effective
at reducing the loss on the training data, since it will encompass information from all
training samples instead of, say, only 128 random samples. As a result, we will need many
fewer steps of training, and we should use a larger learning rate than we would typically
use for mini-batch training (we’ll use learning_rate = 0.1, defined in listing 3.20).

for step in range(40):
 loss = training_step(inputs, targets)
 print(f"Loss at step {step}: {loss:.4f}")

After 40 steps, the training loss seems to have stabilized around 0.025. Let’s plot how
our linear model classifies the training data points. Because our targets are zeros and
ones, a given input point will be classified as “0” if its prediction value is below 0.5, and
as “1” if it is above 0.5 (see figure 3.7):

predictions = model(inputs)
plt.scatter(inputs[:, 0], inputs[:, 1], c=predictions[:, 0] > 0.5)
plt.show()

Listing 3.19 The mean squared error loss function

Listing 3.20 The training step function

Listing 3.21 The batch training loop

per_sample_losses will be a tensor with the same shape as
targets and predictions, containing per-sample loss scores.

We need to average these per-sample loss scores into a
single scalar loss value: this is what reduce_mean does.

Forward pass, inside a
gradient tape scope

Retrieve the gradient
of the loss with regard

to weights.

Update the weights.

83First steps with TensorFlow

Recall that the prediction value for a given point [x, y] is simply prediction ==
[[w1], [w2]] • [x, y] + b == w1 * x + w2 * y + b. Thus, class 0 is defined as w1 * x + w2
* y + b < 0.5, and class 1 is defined as w1 * x + w2 * y + b > 0.5. You’ll notice that what
you’re looking at is really the equation of a line in the 2D plane: w1 * x + w2 * y + b = 0.5.
Above the line is class 1, and below the line is class 0. You may be used to seeing line
equations in the format y = a * x + b; in the same format, our line becomes y = - w1 / w2
* x + (0.5 - b) / w2.

 Let’s plot this line (shown in figure 3.8):

x = np.linspace(-1, 4, 100)
y = - W[0] / W[1] * x + (0.5 - b) / W[1]
plt.plot(x, y, "-r")
plt.scatter(inputs[:, 0], inputs[:, 1], c=predictions[:, 0] > 0.5)

Figure 3.7 Our model’s
predictions on the training
inputs: pretty similar to the
training targets

Generate 100 regularly spaced
numbers between –1 and 4, which

we will use to plot our line.

This is our line’s
equation.

Plot our line ("-r"
means “plot it as
a red line”).

Plot our model’s predictions on the same plot.

Figure 3.8 Our model,
visualized as a line

84 CHAPTER 3 Introduction to Keras and TensorFlow

This is really what a linear classifier is all about: finding the parameters of a line (or, in
higher-dimensional spaces, a hyperplane) neatly separating two classes of data.

3.6 Anatomy of a neural network: Understanding core
Keras APIs
At this point, you know the basics of TensorFlow, and you can use it to implement a
toy model from scratch, such as the batch linear classifier in the previous section, or
the toy neural network at the end of chapter 2. That’s a solid foundation to build
upon. It’s now time to move on to a more productive, more robust path to deep learn-
ing: the Keras API.

3.6.1 Layers: The building blocks of deep learning

The fundamental data structure in neural networks is the layer, to which you were
introduced in chapter 2. A layer is a data processing module that takes as input one or
more tensors and that outputs one or more tensors. Some layers are stateless, but
more frequently layers have a state: the layer’s weights, one or several tensors learned
with stochastic gradient descent, which together contain the network’s knowledge.

 Different types of layers are appropriate for different tensor formats and different
types of data processing. For instance, simple vector data, stored in rank-2 tensors of
shape (samples, features), is often processed by densely connected layers, also called
fully connected or dense layers (the Dense class in Keras). Sequence data, stored in rank-3
tensors of shape (samples, timesteps, features), is typically processed by recurrent
layers, such as an LSTM layer, or 1D convolution layers (Conv1D). Image data, stored in
rank-4 tensors, is usually processed by 2D convolution layers (Conv2D).

 You can think of layers as the LEGO bricks of deep learning, a metaphor that is
made explicit by Keras. Building deep learning models in Keras is done by clipping
together compatible layers to form useful data-transformation pipelines.

THE BASE LAYER CLASS IN KERAS

A simple API should have a single abstraction around which everything is centered. In
Keras, that’s the Layer class. Everything in Keras is either a Layer or something that
closely interacts with a Layer.

 A Layer is an object that encapsulates some state (weights) and some computation
(a forward pass). The weights are typically defined in a build() (although they could
also be created in the constructor, __init__()), and the computation is defined in
the call() method.

 In the previous chapter, we implemented a NaiveDense class that contained two
weights W and b and applied the computation output = activation(dot(input, W) +
b). This is what the same layer would look like in Keras.

from tensorflow import keras

class SimpleDense(keras.layers.Layer):

Listing 3.22 A Dense layer implemented as a Layer subclass

All Keras layers inherit
from the base Layer class.

85Anatomy of a neural network: Understanding core Keras APIs

 def __init__(self, units, activation=None):
 super().__init__()
 self.units = units
 self.activation = activation

 def build(self, input_shape):
 input_dim = input_shape[-1]
 self.W = self.add_weight(shape=(input_dim, self.units),
 initializer="random_normal")
 self.b = self.add_weight(shape=(self.units,),
 initializer="zeros")

 def call(self, inputs):
 y = tf.matmul(inputs, self.W) + self.b
 if self.activation is not None:
 y = self.activation(y)
 return y

In the next section, we’ll cover in detail the purpose of these build() and call()
methods. Don’t worry if you don’t understand everything just yet!

 Once instantiated, a layer like this can be used just like a function, taking as input
a TensorFlow tensor:

>>> my_dense = SimpleDense(units=32, activation=tf.nn.relu)
>>> input_tensor = tf.ones(shape=(2, 784))
>>> output_tensor = my_dense(input_tensor)
>>> print(output_tensor.shape)
(2, 32))

You’re probably wondering, why did we have to implement call() and build(), since
we ended up using our layer by plainly calling it, that is to say, by using its __call__()
method? It’s because we want to be able to create the state just in time. Let’s see how
that works.

AUTOMATIC SHAPE INFERENCE: BUILDING LAYERS ON THE FLY

Just like with LEGO bricks, you can only “clip” together layers that are compatible.
The notion of layer compatibility here refers specifically to the fact that every layer will
only accept input tensors of a certain shape and will return output tensors of a certain
shape. Consider the following example:

from tensorflow.keras import layers
layer = layers.Dense(32, activation="relu")

This layer will return a tensor where the first dimension has been transformed to be
32. It can only be connected to a downstream layer that expects 32-dimensional vec-
tors as its input.

 When using Keras, you don’t have to worry about size compatibility most of the
time, because the layers you add to your models are dynamically built to match the
shape of the incoming layer. For instance, suppose you write the following:

Weight creation
takes place in the
build() method.

add_weight() is a shortcut
method for creating weights.

It is also possible to create
standalone variables and assign

them as layer attributes, like self.W =
tf.Variable(tf.random.uniform(w_shape)).

We define the
forward pass
computation
in the call()

method.

Instantiate our
layer, defined
previously.Create

some test
inputs.Call the layer on

the inputs, just
like a function.

A dense layer with
32 output units

86 CHAPTER 3 Introduction to Keras and TensorFlow

from tensorflow.keras import models
from tensorflow.keras import layers
model = models.Sequential([
 layers.Dense(32, activation="relu"),
 layers.Dense(32)
])

The layers didn’t receive any information about the shape of their inputs—instead,
they automatically inferred their input shape as being the shape of the first inputs
they see.

 In the toy version of the Dense layer we implemented in chapter 2 (which we
named NaiveDense), we had to pass the layer’s input size explicitly to the constructor
in order to be able to create its weights. That’s not ideal, because it would lead to mod-
els that look like this, where each new layer needs to be made aware of the shape of
the layer before it:

model = NaiveSequential([
 NaiveDense(input_size=784, output_size=32, activation="relu"),
 NaiveDense(input_size=32, output_size=64, activation="relu"),
 NaiveDense(input_size=64, output_size=32, activation="relu"),
 NaiveDense(input_size=32, output_size=10, activation="softmax")
])

It would be even worse if the rules used by a layer to produce its output shape are
complex. For instance, what if our layer returned outputs of shape (batch, input_
size * 2 if input_size % 2 == 0 else input_size * 3)?

 If we were to reimplement our NaiveDense layer as a Keras layer capable of auto-
matic shape inference, it would look like the previous SimpleDense layer (see listing
3.22), with its build() and call() methods.

 In SimpleDense, we no longer create weights in the constructor like in the Naive-
Dense example; instead, we create them in a dedicated state-creation method,
build(), which receives as an argument the first input shape seen by the layer. The
build() method is called automatically the first time the layer is called (via its
__call__() method). In fact, that’s why we defined the computation in a separate
call() method rather than in the __call__() method directly. The __call__() method
of the base layer schematically looks like this:

def __call__(self, inputs):
 if not self.built:
 self.build(inputs.shape)
 self.built = True
 return self.call(inputs)

With automatic shape inference, our previous example becomes simple and neat:

model = keras.Sequential([
 SimpleDense(32, activation="relu"),
 SimpleDense(64, activation="relu"),

87Anatomy of a neural network: Understanding core Keras APIs

 SimpleDense(32, activation="relu"),
 SimpleDense(10, activation="softmax")
])

Note that automatic shape inference is not the only thing that the Layer class’s
__call__() method handles. It takes care of many more things, in particular routing
between eager and graph execution (a concept you’ll learn about in chapter 7), and
input masking (which we’ll cover in chapter 11). For now, just remember: when
implementing your own layers, put the forward pass in the call() method.

3.6.2 From layers to models

A deep learning model is a graph of layers. In Keras, that’s the Model class. Until
now, you’ve only seen Sequential models (a subclass of Model), which are simple
stacks of layers, mapping a single input to a single output. But as you move forward,
you’ll be exposed to a much broader variety of network topologies. These are some
common ones:

 Two-branch networks
 Multihead networks
 Residual connections

Network topology can get quite involved. For instance, figure 3.9 shows the topology
of the graph of layers of a Transformer, a common architecture designed to process
text data.

 There are generally two ways of building such models in Keras: you could directly
subclass the Model class, or you could use the Functional API, which lets you do more
with less code. We’ll cover both approaches in chapter 7.

 The topology of a model defines a hypothesis space. You may remember that in chap-
ter 1 we described machine learning as searching for useful representations of some
input data, within a predefined space of possibilities, using guidance from a feedback sig-
nal. By choosing a network topology, you constrain your space of possibilities (hypoth-
esis space) to a specific series of tensor operations, mapping input data to output data.
What you’ll then be searching for is a good set of values for the weight tensors
involved in these tensor operations.

 To learn from data, you have to make assumptions about it. These assumptions
define what can be learned. As such, the structure of your hypothesis space—the
architecture of your model—is extremely important. It encodes the assumptions you
make about your problem, the prior knowledge that the model starts with. For
instance, if you’re working on a two-class classification problem with a model made of
a single Dense layer with no activation (a pure affine transformation), you are assum-
ing that your two classes are linearly separable.

 Picking the right network architecture is more an art than a science, and although
there are some best practices and principles you can rely on, only practice can help
you become a proper neural-network architect. The next few chapters will both teach

88 CHAPTER 3 Introduction to Keras and TensorFlow

you explicit principles for building neural networks and help you develop intuition as
to what works or doesn’t work for specific problems. You’ll build a solid intuition
about what type of model architectures work for different kinds of problems, how to
build these networks in practice, how to pick the right learning configuration, and
how to tweak a model until it yields the results you want to see.

3.6.3 The “compile” step: Configuring the learning process

Once the model architecture is defined, you still have to choose three more things:

 Loss function (objective function)—The quantity that will be minimized during
training. It represents a measure of success for the task at hand.

LayerNormalization

Dense

+

Dense

LayerNormalization

+

MultiHeadAttention

LayerNormalization

Dense

+

Dense

LayerNormalization

+

MultiHeadAttention

LayerNormalization

+

MultiHeadAttention

Figure 3.9 The Transformer architecture (covered in chapter 11). There’s a lot going on
here. Throughout the next few chapters, you’ll climb your way up to understanding it.

89Anatomy of a neural network: Understanding core Keras APIs

 Optimizer—Determines how the network will be updated based on the loss func-
tion. It implements a specific variant of stochastic gradient descent (SGD).

 Metrics—The measures of success you want to monitor during training and vali-
dation, such as classification accuracy. Unlike the loss, training will not optimize
directly for these metrics. As such, metrics don’t need to be differentiable.

Once you’ve picked your loss, optimizer, and metrics, you can use the built-in compile()
and fit() methods to start training your model. Alternatively, you could also write
your own custom training loops—we’ll cover how to do this in chapter 7. It’s a lot
more work! For now, let’s take a look at compile() and fit().

 The compile() method configures the training process—you’ve already been intro-
duced to it in your very first neural network example in chapter 2. It takes the argu-
ments optimizer, loss, and metrics (a list):

model = keras.Sequential([keras.layers.Dense(1)])
model.compile(optimizer="rmsprop",
 loss="mean_squared_error",
 metrics=["accuracy"])

In the preceding call to compile(), we passed the optimizer, loss, and metrics as
strings (such as "rmsprop"). These strings are actually shortcuts that get converted to
Python objects. For instance, "rmsprop" becomes keras.optimizers.RMSprop().
Importantly, it’s also possible to specify these arguments as object instances, like this:

model.compile(optimizer=keras.optimizers.RMSprop(),
 loss=keras.losses.MeanSquaredError(),
 metrics=[keras.metrics.BinaryAccuracy()])

This is useful if you want to pass your own custom losses or metrics, or if you want to
further configure the objects you’re using—for instance, by passing a learning_rate
argument to the optimizer:

model.compile(optimizer=keras.optimizers.RMSprop(learning_rate=1e-4),
 loss=my_custom_loss,
 metrics=[my_custom_metric_1, my_custom_metric_2])

In chapter 7, we’ll cover how to create custom losses and metrics. In general, you
won’t have to create your own losses, metrics, or optimizers from scratch, because
Keras offers a wide range of built-in options that is likely to include what you need:

 Optimizers:

 SGD (with or without momentum)
 RMSprop
 Adam

Define a linear classifier. Specify the optimizer
by name: RMSprop
(it’s case-insensitive).

Specify the loss
by name: mean
squared error.Specify a list of metrics: in

this case, only accuracy.

90 CHAPTER 3 Introduction to Keras and TensorFlow

 Adagrad
 Etc.

Losses:

 CategoricalCrossentropy
 SparseCategoricalCrossentropy
 BinaryCrossentropy
 MeanSquaredError
 KLDivergence
 CosineSimilarity
 Etc.

Metrics:

 CategoricalAccuracy
 SparseCategoricalAccuracy
 BinaryAccuracy
 AUC
 Precision
 Recall
 Etc.

Throughout this book, you’ll see concrete applications of many of these options.

3.6.4 Picking a loss function

Choosing the right loss function for the right problem is extremely important: your
network will take any shortcut it can to minimize the loss, so if the objective doesn’t
fully correlate with success for the task at hand, your network will end up doing
things you may not have wanted. Imagine a stupid, omnipotent AI trained via SGD
with this poorly chosen objective function: “maximizing the average well-being of all
humans alive.” To make its job easier, this AI might choose to kill all humans except a
few and focus on the well-being of the remaining ones—because average well-being
isn’t affected by how many humans are left. That might not be what you intended!
Just remember that all neural networks you build will be just as ruthless in lowering
their loss function—so choose the objective wisely, or you’ll have to face unintended
side effects.

 Fortunately, when it comes to common problems such as classification, regression,
and sequence prediction, there are simple guidelines you can follow to choose the
correct loss. For instance, you’ll use binary crossentropy for a two-class classification
problem, categorical crossentropy for a many-class classification problem, and so on.
Only when you’re working on truly new research problems will you have to develop
your own loss functions. In the next few chapters, we’ll detail explicitly which loss
functions to choose for a wide range of common tasks.

91Anatomy of a neural network: Understanding core Keras APIs

3.6.5 Understanding the fit() method

After compile() comes fit(). The fit() method implements the training loop itself.
These are its key arguments:

 The data (inputs and targets) to train on. It will typically be passed either in the
form of NumPy arrays or a TensorFlow Dataset object. You’ll learn more about
the Dataset API in the next chapters.

 The number of epochs to train for: how many times the training loop should iter-
ate over the data passed.

 The batch size to use within each epoch of mini-batch gradient descent: the
number of training examples considered to compute the gradients for one
weight update step.

history = model.fit(
 inputs,
 targets,
 epochs=5,
 batch_size=128
)

The call to fit() returns a History object. This object contains a history field, which
is a dict mapping keys such as "loss" or specific metric names to the list of their per-
epoch values.

>>> history.history
{"binary_accuracy": [0.855, 0.9565, 0.9555, 0.95, 0.951],
 "loss": [0.6573270302042366,
 0.07434618508815766,
 0.07687718723714351,
 0.07412414988875389,
 0.07617757616937161]}

3.6.6 Monitoring loss and metrics on validation data

The goal of machine learning is not to obtain models that perform well on the train-
ing data, which is easy—all you have to do is follow the gradient. The goal is to obtain
models that perform well in general, and particularly on data points that the model
has never encountered before. Just because a model performs well on its training data
doesn’t mean it will perform well on data it has never seen! For instance, it’s possible
that your model could end up merely memorizing a mapping between your training
samples and their targets, which would be useless for the task of predicting targets for
data the model has never seen before. We’ll go over this point in much more detail in
chapter 5.

Listing 3.23 Calling fit() with NumPy data

The input examples,
as a NumPy array

The corresponding
training targets, as
a NumPy array

The training loop
will iterate over the
data 5 times.

The training loop will
iterate over the data in

batches of 128 examples.

92 CHAPTER 3 Introduction to Keras and TensorFlow

 To keep an eye on how the model does on new data, it’s standard practice to
reserve a subset of the training data as validation data: you won’t be training the model
on this data, but you will use it to compute a loss value and metrics value. You do this
by using the validation_data argument in fit(). Like the training data, the valida-
tion data could be passed as NumPy arrays or as a TensorFlow Dataset object.

model = keras.Sequential([keras.layers.Dense(1)])
model.compile(optimizer=keras.optimizers.RMSprop(learning_rate=0.1),
 loss=keras.losses.MeanSquaredError(),
 metrics=[keras.metrics.BinaryAccuracy()])

indices_permutation = np.random.permutation(len(inputs))
shuffled_inputs = inputs[indices_permutation]
shuffled_targets = targets[indices_permutation]

num_validation_samples = int(0.3 * len(inputs))
val_inputs = shuffled_inputs[:num_validation_samples]
val_targets = shuffled_targets[:num_validation_samples]
training_inputs = shuffled_inputs[num_validation_samples:]
training_targets = shuffled_targets[num_validation_samples:]
model.fit(
 training_inputs,
 training_targets,
 epochs=5,
 batch_size=16,
 validation_data=(val_inputs, val_targets)
)

The value of the loss on the validation data is called the “validation loss,” to distin-
guish it from the “training loss.” Note that it’s essential to keep the training data and
validation data strictly separate: the purpose of validation is to monitor whether
what the model is learning is actually useful on new data. If any of the validation
data has been seen by the model during training, your validation loss and metrics
will be flawed.

 Note that if you want to compute the validation loss and metrics after the training
is complete, you can call the evaluate() method:

loss_and_metrics = model.evaluate(val_inputs, val_targets, batch_size=128)

evaluate() will iterate in batches (of size batch_size) over the data passed and
return a list of scalars, where the first entry is the validation loss and the following
entries are the validation metrics. If the model has no metrics, only the validation loss
is returned (rather than a list).

Listing 3.24 Using the validation_data argument

To avoid having samples
from only one class in
the validation data,
shuffle the inputs and
targets using a random
indices permutation.

Reserve 30% of the
training inputs and
targets for validation
(we’ll exclude these
samples from training
and reserve them to
compute the validation
loss and metrics).

Training data, used to update
the weights of the model

Validation data, used only
to monitor the validation
loss and metrics

93Summary

3.6.7 Inference: Using a model after training

Once you’ve trained your model, you’re going to want to use it to make predictions
on new data. This is called inference. To do this, a naive approach would simply be to
__call__() the model:

predictions = model(new_inputs)

However, this will process all inputs in new_inputs at once, which may not be feasible
if you’re looking at a lot of data (in particular, it may require more memory than your
GPU has).

 A better way to do inference is to use the predict() method. It will iterate over the
data in small batches and return a NumPy array of predictions. And unlike
__call__(), it can also process TensorFlow Dataset objects.

predictions = model.predict(new_inputs, batch_size=128)

For instance, if we use predict() on some of our validation data with the linear
model we trained earlier, we get scalar scores that correspond to the model’s predic-
tion for each input sample:

>>> predictions = model.predict(val_inputs, batch_size=128)
>>> print(predictions[:10])
[[0.3590725]
 [0.82706255]
 [0.74428225]
 [0.682058]
 [0.7312616]
 [0.6059811]
 [0.78046083]
 [0.025846]
 [0.16594526]
 [0.72068727]]

For now, this is all you need to know about Keras models. You are ready to move on to
solving real-world machine learning problems with Keras in the next chapter.

Summary
 TensorFlow is an industry-strength numerical computing framework that can

run on CPU, GPU, or TPU. It can automatically compute the gradient of any
differentiable expression, it can be distributed to many devices, and it can
export programs to various external runtimes—even JavaScript.

 Keras is the standard API for doing deep learning with TensorFlow. It’s what
we’ll use throughout this book.

 Key TensorFlow objects include tensors, variables, tensor operations, and the
gradient tape.

Takes a NumPy array or
TensorFlow tensor and returns
a TensorFlow tensor

Takes a NumPy array or
a Dataset and returns
a NumPy array

94 CHAPTER 3 Introduction to Keras and TensorFlow

 The central class of Keras is the Layer. A layer encapsulates some weights and
some computation. Layers are assembled into models.

 Before you start training a model, you need to pick an optimizer, a loss, and some
metrics, which you specify via the model.compile() method.

 To train a model, you can use the fit() method, which runs mini-batch gradi-
ent descent for you. You can also use it to monitor your loss and metrics on val-
idation data, a set of inputs that the model doesn’t see during training.

 Once your model is trained, you use the model.predict() method to generate
predictions on new inputs.

