
95

Getting started
with neural networks:

Classification and regression

This chapter is designed to get you started using neural networks to solve real prob-
lems. You’ll consolidate the knowledge you gained from chapters 2 and 3, and
you’ll apply what you’ve learned to three new tasks covering the three most com-
mon use cases of neural networks—binary classification, multiclass classification,
and scalar regression:

 Classifying movie reviews as positive or negative (binary classification)
 Classifying news wires by topic (multiclass classification)
 Estimating the price of a house, given real-estate data (scalar regression)

These examples will be your first contact with end-to-end machine learning work-
flows: you’ll get introduced to data preprocessing, basic model architecture princi-
ples, and model evaluation.

This chapter covers
 Your first examples of real-world machine learning

workflows

 Handling classification problems over vector data

 Handling continuous regression problems over
vector data

96 CHAPTER 4 Getting started with neural networks: Classification and regression

By the end of this chapter, you’ll be able to use neural networks to handle simple clas-
sification and regression tasks over vector data. You’ll then be ready to start building a
more principled, theory-driven understanding of machine learning in chapter 5.

Classification and regression glossary
Classification and regression involve many specialized terms. You’ve come across
some of them in earlier examples, and you’ll see more of them in future chapters.
They have precise, machine learning–specific definitions, and you should be famil-
iar with them:

 Sample or input—One data point that goes into your model.
 Prediction or output—What comes out of your model.
 Target—The truth. What your model should ideally have predicted, according

to an external source of data.
 Prediction error or loss value—A measure of the distance between your

model’s prediction and the target.
 Classes—A set of possible labels to choose from in a classification problem.

For example, when classifying cat and dog pictures, “dog” and “cat” are the
two classes.

 Label —A specific instance of a class annotation in a classification problem.
For instance, if picture #1234 is annotated as containing the class “dog,”
then “dog” is a label of picture #1234.

 Ground-truth or annotations—All targets for a dataset, typically collected by
humans.

 Binary classification—A classification task where each input sample should
be categorized into two exclusive categories.

 Multiclass classification—A classification task where each input sample
should be categorized into more than two categories: for instance, classifying
handwritten digits.

 Multilabel classification—A classification task where each input sample can
be assigned multiple labels. For instance, a given image may contain both a
cat and a dog and should be annotated both with the “cat” label and the
“dog” label. The number of labels per image is usually variable.

 Scalar regression—A task where the target is a continuous scalar value. Pre-
dicting house prices is a good example: the different target prices form a con-
tinuous space.

 Vector regression—A task where the target is a set of continuous values: for
example, a continuous vector. If you’re doing regression against multiple val-
ues (such as the coordinates of a bounding box in an image), then you’re
doing vector regression.

 Mini-batch or batch—A small set of samples (typically between 8 and 128)
that are processed simultaneously by the model. The number of samples is
often a power of 2, to facilitate memory allocation on GPU. When training, a
mini-batch is used to compute a single gradient-descent update applied to
the weights of the model.

97Classifying movie reviews: A binary classification example

4.1 Classifying movie reviews: A binary classification
example
Two-class classification, or binary classification, is one of the most common kinds of
machine learning problems. In this example, you’ll learn to classify movie reviews as
positive or negative, based on the text content of the reviews.

4.1.1 The IMDB dataset

You’ll work with the IMDB dataset: a set of 50,000 highly polarized reviews from the
Internet Movie Database. They’re split into 25,000 reviews for training and 25,000
reviews for testing, each set consisting of 50% negative and 50% positive reviews.

 Just like the MNIST dataset, the IMDB dataset comes packaged with Keras. It has
already been preprocessed: the reviews (sequences of words) have been turned into
sequences of integers, where each integer stands for a specific word in a dictionary.
This enables us to focus on model building, training, and evaluation. In chapter 11,
you’ll learn how to process raw text input from scratch.

 The following code will load the dataset (when you run it the first time, about 80
MB of data will be downloaded to your machine).

from tensorflow.keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(
 num_words=10000)

The argument num_words=10000 means you’ll only keep the top 10,000 most fre-
quently occurring words in the training data. Rare words will be discarded. This allows
us to work with vector data of manageable size. If we didn’t set this limit, we’d be work-
ing with 88,585 unique words in the training data, which is unnecessarily large. Many
of these words only occur in a single sample, and thus can’t be meaningfully used for
classification.

 The variables train_data and test_data are lists of reviews; each review is a list of
word indices (encoding a sequence of words). train_labels and test_labels are
lists of 0s and 1s, where 0 stands for negative and 1 stands for positive :

>>> train_data[0]
[1, 14, 22, 16, ... 178, 32]
>>> train_labels[0]
1

Because we’re restricting ourselves to the top 10,000 most frequent words, no word
index will exceed 10,000:

>>> max([max(sequence) for sequence in train_data])
9999

For kicks, here’s how you can quickly decode one of these reviews back to English words.

Listing 4.1 Loading the IMDB dataset

98 CHAPTER 4 Getting started with neural networks: Classification and regression

word_index = imdb.get_word_index()
reverse_word_index = dict(
 [(value, key) for (key, value) in word_index.items()])
decoded_review = " ".join(
 [reverse_word_index.get(i - 3, "?") for i in train_data[0]])

4.1.2 Preparing the data

You can’t directly feed lists of integers into a neural network. They all have different
lengths, but a neural network expects to process contiguous batches of data. You have
to turn your lists into tensors. There are two ways to do that:

 Pad your lists so that they all have the same length, turn them into an integer
tensor of shape (samples, max_length), and start your model with a layer capa-
ble of handling such integer tensors (the Embedding layer, which we’ll cover in
detail later in the book).

 Multi-hot encode your lists to turn them into vectors of 0s and 1s. This would
mean, for instance, turning the sequence [8, 5] into a 10,000-dimensional vec-
tor that would be all 0s except for indices 8 and 5, which would be 1s. Then you
could use a Dense layer, capable of handling floating-point vector data, as the
first layer in your model.

Let’s go with the latter solution to vectorize the data, which you’ll do manually for
maximum clarity.

import numpy as np
def vectorize_sequences(sequences, dimension=10000):
 results = np.zeros((len(sequences), dimension))
 for i, sequence in enumerate(sequences):
 for j in sequence:
 results[i, j] = 1.
 return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

Here’s what the samples look like now:

>>> x_train[0]
array([0., 1., 1., ..., 0., 0., 0.])

Listing 4.2 Decoding reviews back to text

Listing 4.3 Encoding the integer sequences via multi-hot encoding

word_index is a dictionary mapping
words to an integer index.

Reverses it,
mapping
integer indices
to wordsDecodes the review. Note that the indices are offset by 3

because 0, 1, and 2 are reserved indices for “padding,”
“start of sequence,” and “unknown.”

Creates an all-zero matrix
of shape (len(sequences),
dimension)

Sets specific indices
of results[i] to 1s

Vectorized
training data

Vectorized test data

99Classifying movie reviews: A binary classification example

You should also vectorize your labels, which is straightforward:

y_train = np.asarray(train_labels).astype("float32")
y_test = np.asarray(test_labels).astype("float32")

Now the data is ready to be fed into a neural network.

4.1.3 Building your model

The input data is vectors, and the labels are scalars (1s and 0s): this is one of the simplest
problem setups you’ll ever encounter. A type of model that performs well on such a prob-
lem is a plain stack of densely connected (Dense) layers with relu activations.

 There are two key architecture decisions to be made about such a stack of Dense
layers:

 How many layers to use
 How many units to choose for each layer

In chapter 5, you’ll learn formal principles to guide
you in making these choices. For the time being,
you’ll have to trust me with the following architecture
choices:

 Two intermediate layers with 16 units each
 A third layer that will output the scalar predic-

tion regarding the sentiment of the current
review

Figure 4.1 shows what the model looks like. And the
following listing shows the Keras implementation,
similar to the MNIST example you saw previously.

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
 layers.Dense(16, activation="relu"),
 layers.Dense(16, activation="relu"),
 layers.Dense(1, activation="sigmoid")
])

The first argument being passed to each Dense layer is the number of units in the
layer: the dimensionality of representation space of the layer. You remember from
chapters 2 and 3 that each such Dense layer with a relu activation implements the fol-
lowing chain of tensor operations:

output = relu(dot(input, W) + b)

Listing 4.4 Model definition

Dense (units=16)

Input

(vectorized text)

Output

(probability)

Dense (units=16)

Dense (units=1)

Figure 4.1 The three-layer model

100 CHAPTER 4 Getting started with neural networks: Classification and regression

Having 16 units means the weight matrix W will have shape (input_dimension, 16):
the dot product with W will project the input data onto a 16-dimensional representa-
tion space (and then you’ll add the bias vector b and apply the relu operation). You
can intuitively understand the dimensionality of your representation space as “how
much freedom you’re allowing the model to have when learning internal representa-
tions.” Having more units (a higher-dimensional representation space) allows your
model to learn more-complex representations, but it makes the model more computa-
tionally expensive and may lead to learning unwanted patterns (patterns that will
improve performance on the training data but not on the test data).

 The intermediate layers use relu as their activation function, and the final layer
uses a sigmoid activation so as to output a probability (a score between 0 and 1 indicat-
ing how likely the sample is to have the target “1”: how likely the review is to be posi-
tive). A relu (rectified linear unit) is a function meant to zero out negative values (see
figure 4.2), whereas a sigmoid “squashes” arbitrary values into the [0, 1] interval (see fig-
ure 4.3), outputting something that can be interpreted as a probability.

Finally, you need to choose a loss function and an optimizer. Because you’re facing a
binary classification problem and the output of your model is a probability (you end
your model with a single-unit layer with a sigmoid activation), it’s best to use the
binary_crossentropy loss. It isn’t the only viable choice: for instance, you could use
mean_squared_error. But crossentropy is usually the best choice when you’re dealing

Figure 4.2 The rectified linear unit function

101Classifying movie reviews: A binary classification example

with models that output probabilities. Crossentropy is a quantity from the field of infor-
mation theory that measures the distance between probability distributions or, in this
case, between the ground-truth distribution and your predictions.

 As for the choice of the optimizer, we’ll go with rmsprop, which is a usually a good
default choice for virtually any problem.

What are activation functions, and why are they necessary?
Without an activation function like relu (also called a non-linearity), the Dense layer
would consist of two linear operations—a dot product and an addition:

output = dot(input, W) + b

The layer could only learn linear transformations (affine transformations) of the input
data: the hypothesis space of the layer would be the set of all possible linear trans-
formations of the input data into a 16-dimensional space. Such a hypothesis space
is too restricted and wouldn’t benefit from multiple layers of representations,
because a deep stack of linear layers would still implement a linear operation: adding
more layers wouldn’t extend the hypothesis space (as you saw in chapter 2).

In order to get access to a much richer hypothesis space that will benefit from deep
representations, you need a non-linearity, or activation function. relu is the most
popular activation function in deep learning, but there are many other candidates,
which all come with similarly strange names: prelu, elu, and so on.

Figure 4.3 The sigmoid function

102 CHAPTER 4 Getting started with neural networks: Classification and regression

 Here’s the step where we configure the model with the rmsprop optimizer and
the binary_crossentropy loss function. Note that we’ll also monitor accuracy during
training.

model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])

4.1.4 Validating your approach

As you learned in chapter 3, a deep learning model should never be evaluated on its
training data—it’s standard practice to use a validation set to monitor the accuracy of
the model during training. Here, we’ll create a validation set by setting apart 10,000
samples from the original training data.

x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]

We will now train the model for 20 epochs (20 iterations over all samples in the train-
ing data) in mini-batches of 512 samples. At the same time, we will monitor loss and
accuracy on the 10,000 samples that we set apart. We do so by passing the validation
data as the validation_data argument.

history = model.fit(partial_x_train,
 partial_y_train,
 epochs=20,
 batch_size=512,
 validation_data=(x_val, y_val))

On CPU, this will take less than 2 seconds per epoch—training is over in 20 seconds.
At the end of every epoch, there is a slight pause as the model computes its loss and
accuracy on the 10,000 samples of the validation data.

 Note that the call to model.fit() returns a History object, as you saw in chapter 3.
This object has a member history, which is a dictionary containing data about every-
thing that happened during training. Let’s look at it:

>>> history_dict = history.history
>>> history_dict.keys()
[u"accuracy", u"loss", u"val_accuracy", u"val_loss"]

Listing 4.5 Compiling the model

Listing 4.6 Setting aside a validation set

Listing 4.7 Training your model

103Classifying movie reviews: A binary classification example

The dictionary contains four entries: one per metric that was being monitored during
training and during validation. In the following two listings, let’s use Matplotlib to plot
the training and validation loss side by side (see figure 4.4), as well as the training and
validation accuracy (see figure 4.5). Note that your own results may vary slightly due to
a different random initialization of your model.

Figure 4.4 Training and validation loss

Figure 4.5 Training and validation accuracy

104 CHAPTER 4 Getting started with neural networks: Classification and regression

import matplotlib.pyplot as plt
history_dict = history.history
loss_values = history_dict["loss"]
val_loss_values = history_dict["val_loss"]
epochs = range(1, len(loss_values) + 1)
plt.plot(epochs, loss_values, "bo", label="Training loss")
plt.plot(epochs, val_loss_values, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()

plt.clf()
acc = history_dict["accuracy"]
val_acc = history_dict["val_accuracy"]
plt.plot(epochs, acc, "bo", label="Training acc")
plt.plot(epochs, val_acc, "b", label="Validation acc")
plt.title("Training and validation accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.show()

As you can see, the training loss decreases with every epoch, and the training accuracy
increases with every epoch. That’s what you would expect when running gradient-
descent optimization—the quantity you’re trying to minimize should be less with
every iteration. But that isn’t the case for the validation loss and accuracy: they seem to
peak at the fourth epoch. This is an example of what we warned against earlier: a
model that performs better on the training data isn’t necessarily a model that will
do better on data it has never seen before. In precise terms, what you’re seeing is
overfitting: after the fourth epoch, you’re overoptimizing on the training data, and you
end up learning representations that are specific to the training data and don’t gener-
alize to data outside of the training set.

 In this case, to prevent overfitting, you could stop training after four epochs. In
general, you can use a range of techniques to mitigate overfitting, which we’ll cover
in chapter 5.

 Let’s train a new model from scratch for four epochs and then evaluate it on the
test data.

model = keras.Sequential([
 layers.Dense(16, activation="relu"),
 layers.Dense(16, activation="relu"),

Listing 4.8 Plotting the training and validation loss

Listing 4.9 Plotting the training and validation accuracy

Listing 4.10 Retraining a model from scratch

"bo" is for
"blue dot."

"b" is for
"solid blue line."

Clears the figure

105Classifying movie reviews: A binary classification example

 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
model.fit(x_train, y_train, epochs=4, batch_size=512)
results = model.evaluate(x_test, y_test)

The final results are as follows:

>>> results
[0.2929924130630493, 0.88327999999999995]

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art
approaches, you should be able to get close to 95%.

4.1.5 Using a trained model to generate predictions on new data

After having trained a model, you’ll want to use it in a practical setting. You can gener-
ate the likelihood of reviews being positive by using the predict method, as you’ve
learned in chapter 3:

>>> model.predict(x_test)
array([[0.98006207]
 [0.99758697]
 [0.99975556]
 ...,
 [0.82167041]
 [0.02885115]
 [0.65371346]], dtype=float32)

As you can see, the model is confident for some samples (0.99 or more, or 0.01 or
less) but less confident for others (0.6, 0.4).

4.1.6 Further experiments

The following experiments will help convince you that the architecture choices you’ve
made are all fairly reasonable, although there’s still room for improvement:

 You used two representation layers before the final classification layer. Try using
one or three representation layers, and see how doing so affects validation and
test accuracy.

 Try using layers with more units or fewer units: 32 units, 64 units, and so on.
 Try using the mse loss function instead of binary_crossentropy.
 Try using the tanh activation (an activation that was popular in the early days of

neural networks) instead of relu.

The first number, 0.29, is the test
loss, and the second number,
0.88, is the test accuracy.

106 CHAPTER 4 Getting started with neural networks: Classification and regression

4.1.7 Wrapping up

Here’s what you should take away from this example:

 You usually need to do quite a bit of preprocessing on your raw data in order to
be able to feed it—as tensors—into a neural network. Sequences of words can
be encoded as binary vectors, but there are other encoding options too.

 Stacks of Dense layers with relu activations can solve a wide range of problems
(including sentiment classification), and you’ll likely use them frequently.

 In a binary classification problem (two output classes), your model should end
with a Dense layer with one unit and a sigmoid activation: the output of your
model should be a scalar between 0 and 1, encoding a probability.

 With such a scalar sigmoid output on a binary classification problem, the loss
function you should use is binary_crossentropy.

 The rmsprop optimizer is generally a good enough choice, whatever your prob-
lem. That’s one less thing for you to worry about.

 As they get better on their training data, neural networks eventually start over-
fitting and end up obtaining increasingly worse results on data they’ve never
seen before. Be sure to always monitor performance on data that is outside of
the training set.

4.2 Classifying newswires: A multiclass classification example
In the previous section, you saw how to classify vector inputs into two mutually exclu-
sive classes using a densely connected neural network. But what happens when you
have more than two classes?

 In this section, we’ll build a model to classify Reuters newswires into 46 mutually
exclusive topics. Because we have many classes, this problem is an instance of multi-
class classification, and because each data point should be classified into only one cate-
gory, the problem is more specifically an instance of single-label multiclass classification.
If each data point could belong to multiple categories (in this case, topics), we’d be
facing a multilabel multiclass classification problem.

4.2.1 The Reuters dataset

You’ll work with the Reuters dataset, a set of short newswires and their topics, published
by Reuters in 1986. It’s a simple, widely used toy dataset for text classification. There
are 46 different topics; some topics are more represented than others, but each topic
has at least 10 examples in the training set.

 Like IMDB and MNIST, the Reuters dataset comes packaged as part of Keras. Let’s
take a look.

from tensorflow.keras.datasets import reuters
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(
 num_words=10000)

Listing 4.11 Loading the Reuters dataset

107Classifying newswires: A multiclass classification example

As with the IMDB dataset, the argument num_words=10000 restricts the data to the
10,000 most frequently occurring words found in the data.

 You have 8,982 training examples and 2,246 test examples:

>>> len(train_data)
8982
>>> len(test_data)
2246

As with the IMDB reviews, each example is a list of integers (word indices):

>>> train_data[10]
[1, 245, 273, 207, 156, 53, 74, 160, 26, 14, 46, 296, 26, 39, 74, 2979,
3554, 14, 46, 4689, 4329, 86, 61, 3499, 4795, 14, 61, 451, 4329, 17, 12]

Here’s how you can decode it back to words, in case you’re curious.

word_index = reuters.get_word_index()
reverse_word_index = dict(
 [(value, key) for (key, value) in word_index.items()])
decoded_newswire = " ".join(
 [reverse_word_index.get(i - 3, "?") for i in train_data[0]])

 The label associated with an example is an integer between 0 and 45—a topic index:

>>> train_labels[10]
3

4.2.2 Preparing the data

You can vectorize the data with the exact same code as in the previous example.

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

To vectorize the labels, there are two possibilities: you can cast the label list as an inte-
ger tensor, or you can use one-hot encoding. One-hot encoding is a widely used format
for categorical data, also called categorical encoding. In this case, one-hot encoding of
the labels consists of embedding each label as an all-zero vector with a 1 in the place of
the label index. The following listing shows an example.

def to_one_hot(labels, dimension=46):
 results = np.zeros((len(labels), dimension))

Listing 4.12 Decoding newswires back to text

Listing 4.13 Encoding the input data

Listing 4.14 Encoding the labels

Note that the indices are offset by 3 because 0, 1, and 2 are reserved
indices for “padding,” “start of sequence,” and “unknown.”

Vectorized training data

Vectorized test data

108 CHAPTER 4 Getting started with neural networks: Classification and regression

 for i, label in enumerate(labels):
 results[i, label] = 1.
 return results
y_train = to_one_hot(train_labels)
y_test = to_one_hot(test_labels)

Note that there is a built-in way to do this in Keras:

from tensorflow.keras.utils import to_categorical
y_train = to_categorical(train_labels)
y_test = to_categorical(test_labels)

4.2.3 Building your model

This topic-classification problem looks similar to the previous movie-review classifica-
tion problem: in both cases, we’re trying to classify short snippets of text. But there is
a new constraint here: the number of output classes has gone from 2 to 46. The
dimensionality of the output space is much larger.

 In a stack of Dense layers like those we’ve been using, each layer can only access
information present in the output of the previous layer. If one layer drops some
information relevant to the classification problem, this information can never be
recovered by later layers: each layer can potentially become an information bottle-
neck. In the previous example, we used 16-dimensional intermediate layers, but a
16-dimensional space may be too limited to learn to separate 46 different classes:
such small layers may act as information bottlenecks, permanently dropping rele-
vant information.

 For this reason we’ll use larger layers. Let’s go with 64 units.

model = keras.Sequential([
 layers.Dense(64, activation="relu"),
 layers.Dense(64, activation="relu"),
 layers.Dense(46, activation="softmax")
])

There are two other things you should note about this architecture.
 First, we end the model with a Dense layer of size 46. This means for each input

sample, the network will output a 46-dimensional vector. Each entry in this vector
(each dimension) will encode a different output class.

 Second, the last layer uses a softmax activation. You saw this pattern in the MNIST
example. It means the model will output a probability distribution over the 46 different
output classes—for every input sample, the model will produce a 46-dimensional out-
put vector, where output[i] is the probability that the sample belongs to class i. The
46 scores will sum to 1.

 The best loss function to use in this case is categorical_crossentropy. It mea-
sures the distance between two probability distributions: here, between the probability

Listing 4.15 Model definition

Vectorized training labels

Vectorized test labels

109Classifying newswires: A multiclass classification example

distribution output by the model and the true distribution of the labels. By minimiz-
ing the distance between these two distributions, you train the model to output some-
thing as close as possible to the true labels.

model.compile(optimizer="rmsprop",
 loss="categorical_crossentropy",
 metrics=["accuracy"])

4.2.4 Validating your approach

Let’s set apart 1,000 samples in the training data to use as a validation set.

x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = y_train[:1000]
partial_y_train = y_train[1000:]

Now, let’s train the model for 20 epochs.

history = model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=512,
validation_data=(x_val, y_val))

And finally, let’s display its loss and accuracy curves (see figures 4.6 and 4.7).

Listing 4.16 Compiling the model

Listing 4.17 Setting aside a validation set

Listing 4.18 Training the model

Figure 4.6 Training
and validation loss

110 CHAPTER 4 Getting started with neural networks: Classification and regression

loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, "bo", label="Training loss")
plt.plot(epochs, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()

plt.clf()
acc = history.history["accuracy"]
val_acc = history.history["val_accuracy"]
plt.plot(epochs, acc, "bo", label="Training accuracy")
plt.plot(epochs, val_acc, "b", label="Validation accuracy")
plt.title("Training and validation accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.show()

The model begins to overfit after nine epochs. Let’s train a new model from scratch
for nine epochs and then evaluate it on the test set.

model = keras.Sequential([
 layers.Dense(64, activation="relu"),

Listing 4.19 Plotting the training and validation loss

Listing 4.20 Plotting the training and validation accuracy

Listing 4.21 Retraining a model from scratch

Figure 4.7 Training
and validation accuracy

Clears the figure

111Classifying newswires: A multiclass classification example

 layers.Dense(64, activation="relu"),
 layers.Dense(46, activation="softmax")
])
model.compile(optimizer="rmsprop",
 loss="categorical_crossentropy",
 metrics=["accuracy"])
model.fit(x_train,
 y_train,
 epochs=9,
 batch_size=512)
results = model.evaluate(x_test, y_test)

Here are the final results:

>>> results
[0.9565213431445807, 0.79697239536954589]

This approach reaches an accuracy of ~80%. With a balanced binary classification
problem, the accuracy reached by a purely random classifier would be 50%. But in
this case, we have 46 classes, and they may not be equally represented. What would be
the accuracy of a random baseline? We could try quickly implementing one to check
this empirically:

>>> import copy
>>> test_labels_copy = copy.copy(test_labels)
>>> np.random.shuffle(test_labels_copy)
>>> hits_array = np.array(test_labels) == np.array(test_labels_copy)
>>> hits_array.mean()
0.18655387355298308

As you can see, a random classifier would score around 19% classification accuracy, so
the results of our model seem pretty good in that light.

4.2.5 Generating predictions on new data

Calling the model’s predict method on new samples returns a class probability distri-
bution over all 46 topics for each sample. Let’s generate topic predictions for all of the
test data:

predictions = model.predict(x_test)

Each entry in “predictions” is a vector of length 46:

>>> predictions[0].shape
(46,)

The coefficients in this vector sum to 1, as they form a probability distribution:

>>> np.sum(predictions[0])
1.0

112 CHAPTER 4 Getting started with neural networks: Classification and regression

The largest entry is the predicted class—the class with the highest probability:

>>> np.argmax(predictions[0])
4

4.2.6 A different way to handle the labels and the loss

We mentioned earlier that another way to encode the labels would be to cast them as
an integer tensor, like this:

y_train = np.array(train_labels)
y_test = np.array(test_labels)

The only thing this approach would change is the choice of the loss function. The loss
function used in listing 4.21, categorical_crossentropy, expects the labels to follow
a categorical encoding. With integer labels, you should use sparse_categorical_
crossentropy:

model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])

This new loss function is still mathematically the same as categorical_crossentropy;
it just has a different interface.

4.2.7 The importance of having sufficiently large intermediate layers

We mentioned earlier that because the final outputs are 46-dimensional, you should
avoid intermediate layers with many fewer than 46 units. Now let’s see what happens
when we introduce an information bottleneck by having intermediate layers that are
significantly less than 46-dimensional: for example, 4-dimensional.

model = keras.Sequential([
 layers.Dense(64, activation="relu"),
 layers.Dense(4, activation="relu"),
 layers.Dense(46, activation="softmax")
])
model.compile(optimizer="rmsprop",
 loss="categorical_crossentropy",
 metrics=["accuracy"])
model.fit(partial_x_train,
 partial_y_train,
 epochs=20,
 batch_size=128,
 validation_data=(x_val, y_val))

The model now peaks at ~71% validation accuracy, an 8% absolute drop. This drop is
mostly due to the fact that we’re trying to compress a lot of information (enough

Listing 4.22 A model with an information bottleneck

113Predicting house prices: A regression example

information to recover the separation hyperplanes of 46 classes) into an intermediate
space that is too low-dimensional. The model is able to cram most of the necessary
information into these four-dimensional representations, but not all of it.

4.2.8 Further experiments

Like in the previous example, I encourage you to try out the following experiments to
train your intuition about the kind of configuration decisions you have to make with
such models:

 Try using larger or smaller layers: 32 units, 128 units, and so on.
 You used two intermediate layers before the final softmax classification layer.

Now try using a single intermediate layer, or three intermediate layers.

4.2.9 Wrapping up

Here’s what you should take away from this example:

 If you’re trying to classify data points among N classes, your model should end
with a Dense layer of size N.

 In a single-label, multiclass classification problem, your model should end with
a softmax activation so that it will output a probability distribution over the N
output classes.

 Categorical crossentropy is almost always the loss function you should use for
such problems. It minimizes the distance between the probability distributions
output by the model and the true distribution of the targets.

 There are two ways to handle labels in multiclass classification:
– Encoding the labels via categorical encoding (also known as one-hot encod-

ing) and using categorical_crossentropy as a loss function
– Encoding the labels as integers and using the sparse_categorical_cross-

entropy loss function
 If you need to classify data into a large number of categories, you should avoid

creating information bottlenecks in your model due to intermediate layers that
are too small.

4.3 Predicting house prices: A regression example
The two previous examples were considered classification problems, where the goal
was to predict a single discrete label of an input data point. Another common type of
machine learning problem is regression, which consists of predicting a continuous
value instead of a discrete label: for instance, predicting the temperature tomorrow,
given meteorological data or predicting the time that a software project will take to
complete, given its specifications.

NOTE Don’t confuse regression and the logistic regression algorithm. Confusingly,
logistic regression isn’t a regression algorithm—it’s a classification algorithm.

114 CHAPTER 4 Getting started with neural networks: Classification and regression

4.3.1 The Boston housing price dataset

In this section, we’ll attempt to predict the median price of homes in a given Boston
suburb in the mid-1970s, given data points about the suburb at the time, such as the
crime rate, the local property tax rate, and so on. The dataset we’ll use has an interest-
ing difference from the two previous examples. It has relatively few data points: only
506, split between 404 training samples and 102 test samples. And each feature in the
input data (for example, the crime rate) has a different scale. For instance, some val-
ues are proportions, which take values between 0 and 1, others take values between 1
and 12, others between 0 and 100, and so on.

from tensorflow.keras.datasets import boston_housing
(train_data, train_targets), (test_data, test_targets) = (
 boston_housing.load_data())

Let’s look at the data:

>>> train_data.shape
(404, 13)
>>> test_data.shape
(102, 13)

As you can see, we have 404 training samples and 102 test samples, each with 13
numerical features, such as per capita crime rate, average number of rooms per dwell-
ing, accessibility to highways, and so on.

 The targets are the median values of owner-occupied homes, in thousands of dollars:

>>> train_targets
[15.2, 42.3, 50. ... 19.4, 19.4, 29.1]

The prices are typically between $10,000 and $50,000. If that sounds cheap, remem-
ber that this was the mid-1970s, and these prices aren’t adjusted for inflation.

4.3.2 Preparing the data

It would be problematic to feed into a neural network values that all take wildly differ-
ent ranges. The model might be able to automatically adapt to such heterogeneous
data, but it would definitely make learning more difficult. A widespread best practice
for dealing with such data is to do feature-wise normalization: for each feature in the
input data (a column in the input data matrix), we subtract the mean of the feature
and divide by the standard deviation, so that the feature is centered around 0 and has
a unit standard deviation. This is easily done in NumPy.

mean = train_data.mean(axis=0)
train_data -= mean

Listing 4.23 Loading the Boston housing dataset

Listing 4.24 Normalizing the data

115Predicting house prices: A regression example

std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std

Note that the quantities used for normalizing the test data are computed using the
training data. You should never use any quantity computed on the test data in your
workflow, even for something as simple as data normalization.

4.3.3 Building your model

Because so few samples are available, we’ll use a very small model with two intermedi-
ate layers, each with 64 units. In general, the less training data you have, the worse
overfitting will be, and using a small model is one way to mitigate overfitting.

def build_model():
 model = keras.Sequential([
 layers.Dense(64, activation="relu"),
 layers.Dense(64, activation="relu"),
 layers.Dense(1)
])
 model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
 return model

The model ends with a single unit and no activation (it will be a linear layer). This is a
typical setup for scalar regression (a regression where you’re trying to predict a single
continuous value). Applying an activation function would constrain the range the out-
put can take; for instance, if you applied a sigmoid activation function to the last layer,
the model could only learn to predict values between 0 and 1. Here, because the last
layer is purely linear, the model is free to learn to predict values in any range.

 Note that we compile the model with the mse loss function—mean squared error, the
square of the difference between the predictions and the targets. This is a widely used
loss function for regression problems.

 We’re also monitoring a new metric during training: mean absolute error (MAE). It’s the
absolute value of the difference between the predictions and the targets. For instance, an
MAE of 0.5 on this problem would mean your predictions are off by $500 on average.

4.3.4 Validating your approach using K-fold validation

To evaluate our model while we keep adjusting its parameters (such as the number of
epochs used for training), we could split the data into a training set and a validation
set, as we did in the previous examples. But because we have so few data points, the
validation set would end up being very small (for instance, about 100 examples). As a
consequence, the validation scores might change a lot depending on which data
points we chose for validation and which we chose for training: the validation scores

Listing 4.25 Model definition

Because we need to instantiate
the same model multiple times,
we use a function to construct it.

116 CHAPTER 4 Getting started with neural networks: Classification and regression

might have a high variance with regard to the validation split. This would prevent us
from reliably evaluating our model.

 The best practice in such situations is to use K-fold cross-validation (see figure 4.8).

It consists of splitting the available data into K partitions (typically K = 4 or 5), instanti-
ating K identical models, and training each one on K – 1 partitions while evaluating
on the remaining partition. The validation score for the model used is then the aver-
age of the K validation scores obtained. In terms of code, this is straightforward.

k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
 print(f"Processing fold #{i}")
 val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
 val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
 partial_train_data = np.concatenate(
 [train_data[:i * num_val_samples],
 train_data[(i + 1) * num_val_samples:]],
 axis=0)
 partial_train_targets = np.concatenate(
 [train_targets[:i * num_val_samples],
 train_targets[(i + 1) * num_val_samples:]],
 axis=0)
 model = build_model()

model.fit(partial_train_data, partial_train_targets,
 epochs=num_epochs, batch_size=16, verbose=0)
 val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)

all_scores.append(val_mae)

Listing 4.26 K-fold validation

Data split into 3 partitions

Validation Training Training
Validation

score #1
Fold 1

Training Validation Training
Validation

score #2

Final score:

average
Fold 2

Training Training Validation
Validation

score #3
Fold 3

Figure 4.8 K-fold cross-validation with K=3

Prepares the
validation data: data

from partition #k

Prepares the training data:
data from all other partitions

Builds the Keras model
(already compiled)

Trains the model
(in silent mode,
verbose = 0)

Evaluates the model on
the validation data

117Predicting house prices: A regression example

Running this with num_epochs = 100 yields the following results:

>>> all_scores
[2.112449, 3.0801501, 2.6483836, 2.4275346]
>>> np.mean(all_scores)
2.5671294

The different runs do indeed show rather different validation scores, from 2.1 to 3.1.
The average (2.6) is a much more reliable metric than any single score—that’s the
entire point of K-fold cross-validation. In this case, we’re off by $2,600 on average,
which is significant considering that the prices range from $10,000 to $50,000.

 Let’s try training the model a bit longer: 500 epochs. To keep a record of how well
the model does at each epoch, we’ll modify the training loop to save the per-epoch
validation score log for each fold.

num_epochs = 500
all_mae_histories = []
for i in range(k):
 print(f"Processing fold #{i}")
 val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
 val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
 partial_train_data = np.concatenate(
 [train_data[:i * num_val_samples],
 train_data[(i + 1) * num_val_samples:]],
 axis=0)
 partial_train_targets = np.concatenate(
 [train_targets[:i * num_val_samples],
 train_targets[(i + 1) * num_val_samples:]],
 axis=0)
 model = build_model()
 history = model.fit(partial_train_data, partial_train_targets,
 validation_data=(val_data, val_targets),
 epochs=num_epochs, batch_size=16, verbose=0)
 mae_history = history.history["val_mae"]
 all_mae_histories.append(mae_history)

We can then compute the average of the per-epoch MAE scores for all folds.

average_mae_history = [
 np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]

Let’s plot this; see figure 4.9.

plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel("Epochs")
plt.ylabel("Validation MAE")
plt.show()

Listing 4.27 Saving the validation logs at each fold

Listing 4.28 Building the history of successive mean K-fold validation scores

Listing 4.29 Plotting validation scores

Prepares the
validation data: data

from partition #k

Prepares the training
data: data from all
other partitions

Builds the Keras
model (already
compiled)

Trains the
model (in
silent mode,
verbose=0)

118 CHAPTER 4 Getting started with neural networks: Classification and regression

It may be a little difficult to read the plot, due to a scaling issue: the validation MAE
for the first few epochs is dramatically higher than the values that follow. Let’s omit
the first 10 data points, which are on a different scale than the rest of the curve.

truncated_mae_history = average_mae_history[10:]
plt.plot(range(1, len(truncated_mae_history) + 1), truncated_mae_history)
plt.xlabel("Epochs")
plt.ylabel("Validation MAE")
plt.show()

As you can see in figure 4.10, validation MAE stops improving significantly after
120–140 epochs (this number includes the 10 epochs we omitted). Past that point,
we start overfitting.

 Once you’re finished tuning other parameters of the model (in addition to the
number of epochs, you could also adjust the size of the intermediate layers), you can
train a final production model on all of the training data, with the best parameters,
and then look at its performance on the test data.

model = build_model()
model.fit(train_data, train_targets,

epochs=130, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)

Listing 4.30 Plotting validation scores, excluding the first 10 data points

Listing 4.31 Training the final model

Figure 4.9 Validation MAE by epoch

Gets a fresh,
compiled model Trains it on the

entirety of the data

119Predicting house prices: A regression example

Here’s the final result:

>>> test_mae_score
2.4642276763916016

We’re still off by a bit under $2,500. It’s an improvement! Just like with the two previ-
ous tasks, you can try varying the number of layers in the model, or the number of
units per layer, to see if you can squeeze out a lower test error.

4.3.5 Generating predictions on new data

When calling predict() on our binary classification model, we retrieved a scalar score
between 0 and 1 for each input sample. With our multiclass classification model, we
retrieved a probability distribution over all classes for each sample. Now, with this sca-
lar regression model, predict() returns the model’s guess for the sample’s price in
thousands of dollars:

>>> predictions = model.predict(test_data)
>>> predictions[0]
array([9.990133], dtype=float32)

The first house in the test set is predicted to have a price of about $10,000.

4.3.6 Wrapping up

Here’s what you should take away from this scalar regression example:

 Regression is done using different loss functions than we used for classification.
Mean squared error (MSE) is a loss function commonly used for regression.

Figure 4.10 Validation MAE by epoch, excluding the first 10 data points

120 CHAPTER 4 Getting started with neural networks: Classification and regression

 Similarly, evaluation metrics to be used for regression differ from those used for
classification; naturally, the concept of accuracy doesn’t apply for regression. A
common regression metric is mean absolute error (MAE).

 When features in the input data have values in different ranges, each feature
should be scaled independently as a preprocessing step.

 When there is little data available, using K-fold validation is a great way to reli-
ably evaluate a model.

 When little training data is available, it’s preferable to use a small model with few
intermediate layers (typically only one or two), in order to avoid severe overfitting.

Summary
 The three most common kinds of machine learning tasks on vector data are

binary classification, multiclass classification, and scalar regression.
– The “Wrapping up” sections earlier in the chapter summarize the important

points you’ve learned regarding each task.
– Regression uses different loss functions and different evaluation metrics

than classification.
 You’ll usually need to preprocess raw data before feeding it into a neural network.
 When your data has features with different ranges, scale each feature inde-

pendently as part of preprocessing.
 As training progresses, neural networks eventually begin to overfit and obtain

worse results on never-before-seen data.
 If you don’t have much training data, use a small model with only one or two

intermediate layers, to avoid severe overfitting.
 If your data is divided into many categories, you may cause information bottle-

necks if you make the intermediate layers too small.
 When you’re working with little data, K-fold validation can help reliably evalu-

ate your model.

