
121

Fundamentals
of machine learning

After the three practical examples in chapter 4, you should be starting to feel famil-
iar with how to approach classification and regression problems using neural net-
works, and you’ve witnessed the central problem of machine learning: overfitting.
This chapter will formalize some of your new intuition about machine learning into
a solid conceptual framework, highlighting the importance of accurate model eval-
uation and the balance between training and generalization.

5.1 Generalization: The goal of machine learning
In the three examples presented in chapter 4—predicting movie reviews, topic clas-
sification, and house-price regression—we split the data into a training set, a valida-
tion set, and a test set. The reason not to evaluate the models on the same data they

This chapter covers
 Understanding the tension between

generalization and optimization, the fundamental
issue in machine learning

 Evaluation methods for machine learning models

 Best practices to improve model fitting

 Best practices to achieve better generalization

122 CHAPTER 5 Fundamentals of machine learning

were trained on quickly became evident: after just a few epochs, performance on
never-before-seen data started diverging from performance on the training data,
which always improves as training progresses. The models started to overfit. Overfitting
happens in every machine learning problem.

 The fundamental issue in machine learning is the tension between optimization
and generalization. Optimization refers to the process of adjusting a model to get the
best performance possible on the training data (the learning in machine learning),
whereas generalization refers to how well the trained model performs on data it has
never seen before. The goal of the game is to get good generalization, of course, but
you don’t control generalization; you can only fit the model to its training data. If you
do that too well, overfitting kicks in and generalization suffers.

 But what causes overfitting? How can we achieve good generalization?

5.1.1 Underfitting and overfitting

For the models you saw in the previous chapter, performance on the held-out valida-
tion data started improving as training went on and then inevitably peaked after a
while. This pattern (illustrated in figure 5.1) is universal. You’ll see it with any model
type and any dataset.

At the beginning of training, optimization and generalization are correlated: the
lower the loss on training data, the lower the loss on test data. While this is happening,
your model is said to be underfit: there is still progress to be made; the network hasn’t
yet modeled all relevant patterns in the training data. But after a certain number of
iterations on the training data, generalization stops improving, validation metrics stall
and then begin to degrade: the model is starting to overfit. That is, it’s beginning to
learn patterns that are specific to the training data but that are misleading or irrele-
vant when it comes to new data.

Loss
value

Training time

Underfitting

Overfitting

Robust fit

Training curve

Validation curve

Figure 5.1 Canonical overfitting behavior

123Generalization: The goal of machine learning

 Overfitting is particularly likely to occur when your data is noisy, if it involves
uncertainty, or if it includes rare features. Let’s look at concrete examples.

NOISY TRAINING DATA

In real-world datasets, it’s fairly common for some inputs to be invalid. Perhaps a
MNIST digit could be an all-black image, for instance, or something like figure 5.2.

What are these? I don’t know either. But they’re all part of the MNIST training set.
What’s even worse, however, is having perfectly valid inputs that end up mislabeled,
like those in figure 5.3.

If a model goes out of its way to incorporate such outliers, its generalization perfor-
mance will degrade, as shown in figure 5.4. For instance, a 4 that looks very close to
the mislabeled 4 in figure 5.3 may end up getting classified as a 9.

Figure 5.2 Some pretty weird
MNIST training samples

Figure 5.3 Mislabeled MNIST training samples

124 CHAPTER 5 Fundamentals of machine learning

AMBIGUOUS FEATURES

Not all data noise comes from inaccuracies—even perfectly clean and neatly labeled
data can be noisy when the problem involves uncertainty and ambiguity. In classifica-
tion tasks, it is often the case that some regions of the input feature space are associ-
ated with multiple classes at the same time. Let’s say you’re developing a model that
takes an image of a banana and predicts whether the banana is unripe, ripe, or rotten.
These categories have no objective boundaries, so the same picture might be classified
as either unripe or ripe by different human labelers. Similarly, many problems involve
randomness. You could use atmospheric pressure data to predict whether it will rain
tomorrow, but the exact same measurements may be followed sometimes by rain and
sometimes by a clear sky, with some probability.

 A model could overfit to such probabilistic data by being too confident about
ambiguous regions of the feature space, like in figure 5.5. A more robust fit would
ignore individual data points and look at the bigger picture.

Figure 5.4 Dealing with outliers: robust fit vs. overfitting

Area of uncertainty

Figure 5.5 Robust fit vs. overfitting giving an ambiguous area of the feature space

125Generalization: The goal of machine learning

RARE FEATURES AND SPURIOUS CORRELATIONS

If you’ve only ever seen two orange tabby cats in your life, and they both happened to
be terribly antisocial, you might infer that orange tabby cats are generally likely to be
antisocial. That’s overfitting: if you had been exposed to a wider variety of cats, includ-
ing more orange ones, you’d have learned that cat color is not well correlated with
character.

 Likewise, machine learning models trained on datasets that include rare feature
values are highly susceptible to overfitting. In a sentiment classification task, if the
word “cherimoya” (a fruit native to the Andes) only appears in one text in the train-
ing data, and this text happens to be negative in sentiment, a poorly regularized
model might put a very high weight on this word and always classify new texts that
mention cherimoyas as negative, whereas, objectively, there’s nothing negative about
the cherimoya.1

 Importantly, a feature value doesn’t need to occur only a couple of times to lead to
spurious correlations. Consider a word that occurs in 100 samples in your training
data and that’s associated with a positive sentiment 54% of the time and with a nega-
tive sentiment 46% of the time. That difference may well be a complete statistical
fluke, yet your model is likely to learn to leverage that feature for its classification task.
This is one of the most common sources of overfitting.

 Here’s a striking example. Take MNIST. Create a new training set by concatenating
784 white noise dimensions to the existing 784 dimensions of the data, so half of the
data is now noise. For comparison, also create an equivalent dataset by concatenating
784 all-zeros dimensions. Our concatenation of meaningless features does not at all
affect the information content of the data: we’re only adding something. Human clas-
sification accuracy wouldn’t be affected by these transformations at all.

from tensorflow.keras.datasets import mnist
import numpy as np

(train_images, train_labels), _ = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255

train_images_with_noise_channels = np.concatenate(
 [train_images, np.random.random((len(train_images), 784))], axis=1)

train_images_with_zeros_channels = np.concatenate(
 [train_images, np.zeros((len(train_images), 784))], axis=1)

Now, let’s train the model from chapter 2 on both of these training sets.

1 Mark Twain even called it “the most delicious fruit known to men.”

Listing 5.1 Adding white noise channels or all-zeros channels to MNIST

126 CHAPTER 5 Fundamentals of machine learning

from tensorflow import keras
from tensorflow.keras import layers

def get_model():
 model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(10, activation="softmax")
])
 model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
 return model

model = get_model()
history_noise = model.fit(
 train_images_with_noise_channels, train_labels,
 epochs=10,
 batch_size=128,
 validation_split=0.2)

model = get_model()
history_zeros = model.fit(
 train_images_with_zeros_channels, train_labels,
 epochs=10,
 batch_size=128,
 validation_split=0.2)

Let’s compare how the validation accuracy of each model evolves over time.

import matplotlib.pyplot as plt
val_acc_noise = history_noise.history["val_accuracy"]
val_acc_zeros = history_zeros.history["val_accuracy"]
epochs = range(1, 11)
plt.plot(epochs, val_acc_noise, "b-",
 label="Validation accuracy with noise channels")
plt.plot(epochs, val_acc_zeros, "b--",
 label="Validation accuracy with zeros channels")
plt.title("Effect of noise channels on validation accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()

Despite the data holding the same information in both cases, the validation accuracy
of the model trained with noise channels ends up about one percentage point lower
(see figure 5.6)—purely through the influence of spurious correlations. The more
noise channels you add, the further accuracy will degrade.

 Noisy features inevitably lead to overfitting. As such, in cases where you aren’t sure
whether the features you have are informative or distracting, it’s common to do feature

Listing 5.2 Training the same model on MNIST data with noise channels or all-zero channels

Listing 5.3 Plotting a validation accuracy comparison

127Generalization: The goal of machine learning

selection before training. Restricting the IMDB data to the top 10,000 most common
words was a crude form of feature selection, for instance. The typical way to do fea-
ture selection is to compute some usefulness score for each feature available—a
measure of how informative the feature is with respect to the task, such as the
mutual information between the feature and the labels—and only keep features that
are above some threshold. Doing this would filter out the white noise channels in
the preceding example.

5.1.2 The nature of generalization in deep learning

A remarkable fact about deep learning models is that they can be trained to fit any-
thing, as long as they have enough representational power.

 Don’t believe me? Try shuffling the MNIST labels and train a model on that. Even
though there is no relationship whatsoever between the inputs and the shuffled
labels, the training loss goes down just fine, even with a relatively small model. Natu-
rally, the validation loss does not improve at all over time, since there is no possibility
of generalization in this setting.

(train_images, train_labels), _ = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255

random_train_labels = train_labels[:]
np.random.shuffle(random_train_labels)

model = keras.Sequential([
 layers.Dense(512, activation="relu"),

Listing 5.4 Fitting an MNIST model with randomly shuffled labels

Figure 5.6 Effect of noise channels on validation accuracy

128 CHAPTER 5 Fundamentals of machine learning

 layers.Dense(10, activation="softmax")
])
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, random_train_labels,
 epochs=100,
 batch_size=128,
 validation_split=0.2)

In fact, you don’t even need to do this with MNIST data—you could just generate
white noise inputs and random labels. You could fit a model on that, too, as long as it
has enough parameters. It would just end up memorizing specific inputs, much like a
Python dictionary.

 If this is the case, then how come deep learning models generalize at all? Shouldn’t
they just learn an ad hoc mapping between training inputs and targets, like a fancy
dict? What expectation can we have that this mapping will work for new inputs?

 As it turns out, the nature of generalization in deep learning has rather little to do
with deep learning models themselves, and much to do with the structure of informa-
tion in the real world. Let’s take a look at what’s really going on here.

THE MANIFOLD HYPOTHESIS

The input to an MNIST classifier (before preprocessing) is a 28 × 28 array of integers
between 0 and 255. The total number of possible input values is thus 256 to the power
of 784—much greater than the number of atoms in the universe. However, very few of
these inputs would look like valid MNIST samples: actual handwritten digits only
occupy a tiny subspace of the parent space of all possible 28 × 28 uint8 arrays. What’s
more, this subspace isn’t just a set of points sprinkled at random in the parent space: it
is highly structured.

 First, the subspace of valid handwritten digits is continuous : if you take a sample
and modify it a little, it will still be recognizable as the same handwritten digit. Fur-
ther, all samples in the valid subspace are connected by smooth paths that run through
the subspace. This means that if you take two random MNIST digits A and B, there
exists a sequence of “intermediate” images that morph A into B, such that two consec-
utive digits are very close to each other (see figure 5.7). Perhaps there will be a few
ambiguous shapes close to the boundary between two classes, but even these shapes
would still look very digit-like.

 In technical terms, you would say that handwritten digits form a manifold within
the space of possible 28 × 28 uint8 arrays. That’s a big word, but the concept is pretty
intuitive. A “manifold” is a lower-dimensional subspace of some parent space that is
locally similar to a linear (Euclidian) space. For instance, a smooth curve in the plane
is a 1D manifold within a 2D space, because for every point of the curve, you can draw
a tangent (the curve can be approximated by a line at every point). A smooth surface
within a 3D space is a 2D manifold. And so on.

129Generalization: The goal of machine learning

More generally, the manifold hypothesis posits that all natural data lies on a low-dimen-
sional manifold within the high-dimensional space where it is encoded. That’s a pretty
strong statement about the structure of information in the universe. As far as we know,
it’s accurate, and it’s the reason why deep learning works. It’s true for MNIST digits,
but also for human faces, tree morphology, the sounds of the human voice, and even
natural language.

 The manifold hypothesis implies that

 Machine learning models only have to fit relatively simple, low-dimensional,
highly structured subspaces within their potential input space (latent mani-
folds).

 Within one of these manifolds, it’s always possible to interpolate between two
inputs, that is to say, morph one into another via a continuous path along which
all points fall on the manifold.

The ability to interpolate between samples is the key to understanding generalization
in deep learning.

INTERPOLATION AS A SOURCE OF GENERALIZATION

If you work with data points that can be interpolated, you can start making sense of
points you’ve never seen before by relating them to other points that lie close on the
manifold. In other words, you can make sense of the totality of the space using only a
sample of the space. You can use interpolation to fill in the blanks.

 Note that interpolation on the latent manifold is different from linear interpola-
tion in the parent space, as illustrated in figure 5.8. For instance, the average of pixels
between two MNIST digits is usually not a valid digit.

 Crucially, while deep learning achieves generalization via interpolation on a
learned approximation of the data manifold, it would be a mistake to assume that
interpolation is all there is to generalization. It’s the tip of the iceberg. Interpolation
can only help you make sense of things that are very close to what you’ve seen before:

Figure 5.7 Different MNIST digits gradually morphing into one another, showing that the space of
handwritten digits forms a “manifold.” This image was generated using code from chapter 12.

130 CHAPTER 5 Fundamentals of machine learning

it enables local generalization. But remarkably, humans deal with extreme novelty all the
time, and they do just fine. You don’t need to be trained in advance on countless
examples of every situation you’ll ever have to encounter. Every single one of your
days is different from any day you’ve experienced before, and different from any day
experienced by anyone since the dawn of humanity. You can switch between spending
a week in NYC, a week in Shanghai, and a week in Bangalore without requiring thou-
sands of lifetimes of learning and rehearsal for each city.

 Humans are capable of extreme generalization, which is enabled by cognitive mecha-
nisms other than interpolation: abstraction, symbolic models of the world, reasoning,
logic, common sense, innate priors about the world—what we generally call reason, as
opposed to intuition and pattern recognition. The latter are largely interpolative in
nature, but the former isn’t. Both are essential to intelligence. We’ll talk more about
this in chapter 14.

WHY DEEP LEARNING WORKS

Remember the crumpled paper ball metaphor from chapter 2? A sheet of paper rep-
resents a 2D manifold within 3D space (see figure 5.9). A deep learning model is a
tool for uncrumpling paper balls, that is, for disentangling latent manifolds.

A deep learning model is basically a very high-dimensional curve—a curve that is
smooth and continuous (with additional constraints on its structure, originating from
model architecture priors), since it needs to be differentiable. And that curve is fitted
to data points via gradient descent, smoothly and incrementally. By its very nature,
deep learning is about taking a big, complex curve—a manifold—and incrementally
adjusting its parameters until it fits some training data points.

Manifold interpolation

(intermediate point

on the latent manifold)

Linear interpolation

(average in the encoding space)

Figure 5.8 Difference between
linear interpolation and interpolation
on the latent manifold. Every point on
the latent manifold of digits is a valid
digit, but the average of two digits
usually isn’t.

Figure 5.9 Uncrumpling a
complicated manifold of data

131Generalization: The goal of machine learning

 The curve involves enough parameters that it could fit anything—indeed, if you let
your model train for long enough, it will effectively end up purely memorizing its
training data and won’t generalize at all. However, the data you’re fitting to isn’t made
of isolated points sparsely distributed across the underlying space. Your data forms a
highly structured, low-dimensional manifold within the input space—that’s the mani-
fold hypothesis. And because fitting your model curve to this data happens gradually
and smoothly over time as gradient descent progresses, there will be an intermediate
point during training at which the model roughly approximates the natural manifold
of the data, as you can see in figure 5.10.

Moving along the curve learned by the model at that point will come close to moving
along the actual latent manifold of the data—as such, the model will be capable of
making sense of never-before-seen inputs via interpolation between training inputs.

 Besides the trivial fact that they have sufficient representational power, there are a
few properties of deep learning models that make them particularly well-suited to
learning latent manifolds:

 Deep learning models implement a smooth, continuous mapping from their
inputs to their outputs. It has to be smooth and continuous because it must
be differentiable, by necessity (you couldn’t do gradient descent otherwise).

Before training:

the model starts

with a random initial state.

Final state: the model

overfits the training data,

reaching perfect training loss.

Beginning of training:

the model gradually

moves toward a better fit.

Test time: performance

of robustly fit model

on new data points

Further training: a robust

fit is achieved, transitively,

in the process of morphing

the model from its initial

state to its final state.

Test time: performance

of overfit model

on new data points

Figure 5.10 Going from a random model to an overfit model, and achieving a robust fit as an intermediate state

132 CHAPTER 5 Fundamentals of machine learning

This smoothness helps approximate latent manifolds, which follow the same
properties.

 Deep learning models tend to be structured in a way that mirrors the “shape” of
the information in their training data (via architecture priors). This is particu-
larly the case for image-processing models (discussed in chapters 8 and 9) and
sequence-processing models (chapter 10). More generally, deep neural net-
works structure their learned representations in a hierarchical and modular
way, which echoes the way natural data is organized.

TRAINING DATA IS PARAMOUNT

While deep learning is indeed well suited to manifold learning, the power to general-
ize is more a consequence of the natural structure of your data than a consequence of
any property of your model. You’ll only be able to generalize if your data forms a man-
ifold where points can be interpolated. The more informative and the less noisy your
features are, the better you will be able to generalize, since your input space will be
simpler and better structured. Data curation and feature engineering are essential to
generalization.

 Further, because deep learning is curve fitting, for a model to perform well it needs
to be trained on a dense sampling of its input space. A “dense sampling” in this context
means that the training data should densely cover the entirety of the input data
manifold (see figure 5.11). This is especially true near decision boundaries. With a
sufficiently dense sampling, it becomes possible to make sense of new inputs by inter-
polating between past training inputs without having to use common sense, abstract
reasoning, or external knowledge about the world—all things that machine learning
models have no access to.

Original latent space

Sparse sampling: the

model learned doesn’t

match the latent

space and leads to

incorrect interpolation.

Dense sampling:

the model learned

approximates the

latent space well,

and interpolation

leads to generalization.

Figure 5.11 A dense sampling of the input space is necessary in order to learn a model
capable of accurate generalization.

133Evaluating machine learning models

As such, you should always keep in mind that the best way to improve a deep learning
model is to train it on more data or better data (of course, adding overly noisy or inac-
curate data will harm generalization). A denser coverage of the input data manifold
will yield a model that generalizes better. You should never expect a deep learning
model to perform anything more than crude interpolation between its training sam-
ples, and thus you should do everything you can to make interpolation as easy as pos-
sible. The only thing you will find in a deep learning model is what you put into it: the
priors encoded in its architecture and the data it was trained on.

 When getting more data isn’t possible, the next best solution is to modulate the
quantity of information that your model is allowed to store, or to add constraints on
the smoothness of the model curve. If a network can only afford to memorize a small
number of patterns, or very regular patterns, the optimization process will force it to
focus on the most prominent patterns, which have a better chance of generalizing
well. The process of fighting overfitting this way is called regularization. We’ll review
regularization techniques in depth in section 5.4.4.

 Before you can start tweaking your model to help it generalize better, you’ll need a
way to assess how your model is currently doing. In the following section, you’ll learn
how you can monitor generalization during model development: model evaluation.

5.2 Evaluating machine learning models
You can only control what you can observe. Since your goal is to develop models that
can successfully generalize to new data, it’s essential to be able to reliably measure the
generalization power of your model. In this section, I’ll formally introduce the differ-
ent ways you can evaluate machine learning models. You’ve already seen most of them
in action in the previous chapter.

5.2.1 Training, validation, and test sets

Evaluating a model always boils down to splitting the available data into three sets:
training, validation, and test. You train on the training data and evaluate your model
on the validation data. Once your model is ready for prime time, you test it one final
time on the test data, which is meant to be as similar as possible to production data.
Then you can deploy the model in production.

 You may ask, why not have two sets: a training set and a test set? You’d train on the
training data and evaluate on the test data. Much simpler!

 The reason is that developing a model always involves tuning its configuration: for
example, choosing the number of layers or the size of the layers (called the hyperpa-
rameters of the model, to distinguish them from the parameters, which are the network’s
weights). You do this tuning by using as a feedback signal the performance of the
model on the validation data. In essence, this tuning is a form of learning: a search for
a good configuration in some parameter space. As a result, tuning the configuration
of the model based on its performance on the validation set can quickly result in over-
fitting to the validation set, even though your model is never directly trained on it.

134 CHAPTER 5 Fundamentals of machine learning

 Central to this phenomenon is the notion of information leaks. Every time you tune
a hyperparameter of your model based on the model’s performance on the validation
set, some information about the validation data leaks into the model. If you do this
only once, for one parameter, then very few bits of information will leak, and your val-
idation set will remain reliable for evaluating the model. But if you repeat this many
times—running one experiment, evaluating on the validation set, and modifying your
model as a result—then you’ll leak an increasingly significant amount of information
about the validation set into the model.

 At the end of the day, you’ll end up with a model that performs artificially well on
the validation data, because that’s what you optimized it for. You care about perfor-
mance on completely new data, not on the validation data, so you need to use a com-
pletely different, never-before-seen dataset to evaluate the model: the test dataset.
Your model shouldn’t have had access to any information about the test set, even indi-
rectly. If anything about the model has been tuned based on test set performance,
then your measure of generalization will be flawed.

 Splitting your data into training, validation, and test sets may seem straightforward,
but there are a few advanced ways to do it that can come in handy when little data is
available. Let’s review three classic evaluation recipes: simple holdout validation, K-fold
validation, and iterated K-fold validation with shuffling. We’ll also talk about the use
of common-sense baselines to check that your training is going somewhere.

SIMPLE HOLDOUT VALIDATION

Set apart some fraction of your data as your test set. Train on the remaining data, and
evaluate on the test set. As you saw in the previous sections, in order to prevent infor-
mation leaks, you shouldn’t tune your model based on the test set, and therefore you
should also reserve a validation set.

 Schematically, holdout validation looks like figure 5.12. Listing 5.5 shows a simple
implementation.

num_validation_samples = 10000
np.random.shuffle(data)

Listing 5.5 Holdout validation (note that labels are omitted for simplicity)

Training set

Total available labeled data

Train on this Evaluate

on this

Held-out

validation

set

Figure 5.12 Simple
holdout validation split

Shuffling the data is
usually appropriate.

135Evaluating machine learning models

validation_data = data[:num_validation_samples]
training_data = data[num_validation_samples:]
model = get_model()
model.fit(training_data, ...)
validation_score = model.evaluate(validation_data, ...)

...

model = get_model()
model.fit(np.concatenate([training_data,

validation_data]), ...)
test_score = model.evaluate(test_data, ...)

This is the simplest evaluation protocol, and it suffers from one flaw: if little data is
available, then your validation and test sets may contain too few samples to be statisti-
cally representative of the data at hand. This is easy to recognize: if different random
shuffling rounds of the data before splitting end up yielding very different measures
of model performance, then you’re having this issue. K-fold validation and iterated
K-fold validation are two ways to address this, as discussed next.

K-FOLD VALIDATION

With this approach, you split your data into K partitions of equal size. For each parti-
tion i, train a model on the remaining K - 1 partitions, and evaluate it on partition i.
Your final score is then the averages of the K scores obtained. This method is helpful
when the performance of your model shows significant variance based on your train-
test split. Like holdout validation, this method doesn’t exempt you from using a dis-
tinct validation set for model calibration.

 Schematically, K-fold cross-validation looks like figure 5.13. Listing 5.6 shows a sim-
ple implementation.

Defines the
validation

set

Defines the training set

Trains a model on the
training data, and evaluates
it on the validation data

At this point you can tune your model,
retrain it, evaluate it, tune it again.

Once you’ve tuned your
hyperparameters, it’s common to
train your final model from scratch
on all non-test data available.

Data split into 3 partitions

Validation Training Training
Validation

score #1
Fold 1

Training Validation Training
Validation

score #2

Final score:

average
Fold 2

Training Training Validation
Validation

score #3
Fold 3

Figure 5.13 K-fold cross-validation with K=3

136 CHAPTER 5 Fundamentals of machine learning

k = 3
num_validation_samples = len(data) // k
np.random.shuffle(data)
validation_scores = []
for fold in range(k):

validation_data = data[num_validation_samples * fold:
 num_validation_samples * (fold + 1)]

training_data = np.concatenate(
data[:num_validation_samples * fold],

 data[num_validation_samples * (fold + 1):])
model = get_model()
model.fit(training_data, ...)
validation_score = model.evaluate(validation_data, ...)
validation_scores.append(validation_score)

validation_score = np.average(validation_scores)
model = get_model()
model.fit(data, ...)
test_score = model.evaluate(test_data, ...)

ITERATED K-FOLD VALIDATION WITH SHUFFLING

This one is for situations in which you have relatively little data available and you need
to evaluate your model as precisely as possible. I’ve found it to be extremely helpful in
Kaggle competitions. It consists of applying K-fold validation multiple times, shuffling
the data every time before splitting it K ways. The final score is the average of the
scores obtained at each run of K-fold validation. Note that you end up training and
evaluating P * K models (where P is the number of iterations you use), which can be
very expensive.

5.2.2 Beating a common-sense baseline

Besides the different evaluation protocols you have available, one last thing you
should know about is the use of common-sense baselines.

 Training a deep learning model is a bit like pressing a button that launches a
rocket in a parallel world. You can’t hear it or see it. You can’t observe the manifold
learning process—it’s happening in a space with thousands of dimensions, and even if
you projected it to 3D, you couldn’t interpret it. The only feedback you have is your
validation metrics—like an altitude meter on your invisible rocket.

 It’s particularly important to be able to tell whether you’re getting off the ground
at all. What was the altitude you started at? Your model seems to have an accuracy of
15%—is that any good? Before you start working with a dataset, you should always pick
a trivial baseline that you’ll try to beat. If you cross that threshold, you’ll know you’re
doing something right: your model is actually using the information in the input data
to make predictions that generalize, and you can keep going. This baseline could be

Listing 5.6 K-fold cross-validation (note that labels are omitted for simplicity)

Selects the
validation-
data partition

Uses the remainder of the data as training
data. Note that the + operator represents
list concatenation, not summation.

Creates a brand-new
instance of the model
(untrained)

Validation score:
average of the validation
scores of the k folds

Trains the final
model on all non-
test data available

137Evaluating machine learning models

the performance of a random classifier, or the performance of the simplest non-
machine learning technique you can imagine.

 For instance, in the MNIST digit-classification example, a simple baseline would be
a validation accuracy greater than 0.1 (random classifier); in the IMDB example, it
would be a validation accuracy greater than 0.5. In the Reuters example, it would be
around 0.18-0.19, due to class imbalance. If you have a binary classification problem
where 90% of samples belong to class A and 10% belong to class B, then a classifier
that always predicts A already achieves 0.9 in validation accuracy, and you’ll need to do
better than that.

 Having a common-sense baseline you can refer to is essential when you’re getting
started on a problem no one has solved before. If you can’t beat a trivial solution, your
model is worthless—perhaps you’re using the wrong model, or perhaps the problem
you’re tackling can’t even be approached with machine learning in the first place.
Time to go back to the drawing board.

5.2.3 Things to keep in mind about model evaluation

Keep an eye out for the following when you’re choosing an evaluation protocol:

 Data representativeness—You want both your training set and test set to be rep-
resentative of the data at hand. For instance, if you’re trying to classify images
of digits, and you’re starting from an array of samples where the samples are
ordered by their class, taking the first 80% of the array as your training set
and the remaining 20% as your test set will result in your training set contain-
ing only classes 0–7, whereas your test set will contain only classes 8–9. This
seems like a ridiculous mistake, but it’s surprisingly common. For this reason,
you usually should randomly shuffle your data before splitting it into training
and test sets.

 The arrow of time—If you’re trying to predict the future given the past (for exam-
ple, tomorrow’s weather, stock movements, and so on), you should not ran-
domly shuffle your data before splitting it, because doing so will create a
temporal leak : your model will effectively be trained on data from the future. In
such situations, you should always make sure all data in your test set is posterior
to the data in the training set.

 Redundancy in your data—If some data points in your data appear twice (fairly
common with real-world data), then shuffling the data and splitting it into a
training set and a validation set will result in redundancy between the training
and validation sets. In effect, you’ll be testing on part of your training data,
which is the worst thing you can do! Make sure your training set and validation
set are disjoint.

Having a reliable way to evaluate the performance of your model is how you’ll be able
to monitor the tension at the heart of machine learning—between optimization and
generalization, underfitting and overfitting.

138 CHAPTER 5 Fundamentals of machine learning

5.3 Improving model fit
To achieve the perfect fit, you must first overfit. Since you don’t know in advance
where the boundary lies, you must cross it to find it. Thus, your initial goal as you start
working on a problem is to achieve a model that shows some generalization power
and that is able to overfit. Once you have such a model, you’ll focus on refining gener-
alization by fighting overfitting.

 There are three common problems you’ll encounter at this stage:

 Training doesn’t get started: your training loss doesn’t go down over time.
 Training gets started just fine, but your model doesn’t meaningfully generalize:

you can’t beat the common-sense baseline you set.
 Training and validation loss both go down over time, and you can beat your

baseline, but you don’t seem to be able to overfit, which indicates you’re still
underfitting.

Let’s see how you can address these issues to achieve the first big milestone of a
machine learning project: getting a model that has some generalization power (it can
beat a trivial baseline) and that is able to overfit.

5.3.1 Tuning key gradient descent parameters

Sometimes training doesn’t get started, or it stalls too early. Your loss is stuck. This is
always something you can overcome: remember that you can fit a model to random
data. Even if nothing about your problem makes sense, you should still be able to train
something—if only by memorizing the training data.

 When this happens, it’s always a problem with the configuration of the gradient
descent process: your choice of optimizer, the distribution of initial values in the
weights of your model, your learning rate, or your batch size. All these parameters are
interdependent, and as such it is usually sufficient to tune the learning rate and the
batch size while keeping the rest of the parameters constant.

 Let’s look at a concrete example: let’s train the MNIST model from chapter 2 with
an inappropriately large learning rate of value 1.

(train_images, train_labels), _ = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255

model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(10, activation="softmax")
])
model.compile(optimizer=keras.optimizers.RMSprop(1.),
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=10,

Listing 5.7 Training an MNIST model with an incorrectly high learning rate

139Improving model fit

 batch_size=128,
 validation_split=0.2)

The model quickly reaches a training and validation accuracy in the 30%–40% range,
but cannot get past that. Let’s try to lower the learning rate to a more reasonable value
of 1e-2.

model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(10, activation="softmax")
])
model.compile(optimizer=keras.optimizers.RMSprop(1e-2),
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=10,
 batch_size=128,
 validation_split=0.2)

The model is now able to train.
 If you find yourself in a similar situation, try

 Lowering or increasing the learning rate. A learning rate that is too high may
lead to updates that vastly overshoot a proper fit, like in the preceding example,
and a learning rate that is too low may make training so slow that it appears
to stall.

 Increasing the batch size. A batch with more samples will lead to gradients that
are more informative and less noisy (lower variance).

You will, eventually, find a configuration that gets training started.

5.3.2 Leveraging better architecture priors

You have a model that fits, but for some reason your validation metrics aren’t improv-
ing at all. They remain no better than what a random classifier would achieve: your
model trains but doesn’t generalize. What’s going on?

 This is perhaps the worst machine learning situation you can find yourself in. It
indicates that something is fundamentally wrong with your approach, and it may not be easy
to tell what. Here are some tips.

 First, it may be that the input data you’re using simply doesn’t contain sufficient
information to predict your targets: the problem as formulated is not solvable. This is
what happened earlier when we tried to fit an MNIST model where the labels were
shuffled: the model would train just fine, but validation accuracy would stay stuck at
10%, because it was plainly impossible to generalize with such a dataset.

 It may also be that the kind of model you’re using is not suited for the problem at
hand. For instance, in chapter 10, you’ll see an example of a timeseries prediction

Listing 5.8 The same model with a more appropriate learning rate

140 CHAPTER 5 Fundamentals of machine learning

problem where a densely connected architecture isn’t able to beat a trivial baseline,
whereas a more appropriate recurrent architecture does manage to generalize well.
Using a model that makes the right assumptions about the problem is essential to
achieve generalization: you should leverage the right architecture priors.

 In the following chapters, you’ll learn about the best architectures to use for a vari-
ety of data modalities—images, text, timeseries, and so on. In general, you should
always make sure to read up on architecture best practices for the kind of task you’re
attacking—chances are you’re not the first person to attempt it.

5.3.3 Increasing model capacity

If you manage to get to a model that fits, where validation metrics are going down,
and that seems to achieve at least some level of generalization power, congratulations:
you’re almost there. Next, you need to get your model to start overfitting.

 Consider the following small model—a simple logistic regression—trained on MNIST
pixels.

model = keras.Sequential([layers.Dense(10, activation="softmax")])
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
history_small_model = model.fit(
 train_images, train_labels,
 epochs=20,
 batch_size=128,
 validation_split=0.2)

You get loss curves that look like figure 5.14:

import matplotlib.pyplot as plt
val_loss = history_small_model.history["val_loss"]
epochs = range(1, 21)
plt.plot(epochs, val_loss, "b--",
 label="Validation loss")
plt.title("Effect of insufficient model capacity on validation loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()

Validation metrics seem to stall, or to improve very slowly, instead of peaking and
reversing course. The validation loss goes to 0.26 and just stays there. You can fit, but
you can’t clearly overfit, even after many iterations over the training data. You’re likely
to encounter similar curves often in your career.

 Remember that it should always be possible to overfit. Much like the problem
where the training loss doesn’t go down, this is an issue that can always be solved. If

Listing 5.9 A simple logistic regression on MNIST

141Improving model fit

you can’t seem to be able to overfit, it’s likely a problem with the representational
power of your model: you’re going to need a bigger model, one with more capacity,
that is to say, one able to store more information. You can increase representational
power by adding more layers, using bigger layers (layers with more parameters), or
using kinds of layers that are more appropriate for the problem at hand (better
architecture priors).

 Let’s try training a bigger model, one with two intermediate layers with 96 units
each:

model = keras.Sequential([
 layers.Dense(96, activation="relu"),
 layers.Dense(96, activation="relu"),
 layers.Dense(10, activation="softmax"),
])
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
history_large_model = model.fit(
 train_images, train_labels,
 epochs=20,
 batch_size=128,
 validation_split=0.2)

The validation curve now looks exactly like it should: the model fits fast and starts
overfitting after 8 epochs (see figure 5.15).

Figure 5.14 Effect of insufficient model capacity on loss curves

142 CHAPTER 5 Fundamentals of machine learning

5.4 Improving generalization
Once your model has shown itself to have some generalization power and to be able
to overfit, it’s time to switch your focus to maximizing generalization.

5.4.1 Dataset curation

You’ve already learned that generalization in deep learning originates from the latent
structure of your data. If your data makes it possible to smoothly interpolate between
samples, you will be able to train a deep learning model that generalizes. If your prob-
lem is overly noisy or fundamentally discrete, like, say, list sorting, deep learning will
not help you. Deep learning is curve fitting, not magic.

 As such, it is essential that you make sure that you’re working with an appropriate
dataset. Spending more effort and money on data collection almost always yields a much
greater return on investment than spending the same on developing a better model.

 Make sure you have enough data. Remember that you need a dense sampling of
the input-cross-output space. More data will yield a better model. Sometimes,
problems that seem impossible at first become solvable with a larger dataset.

 Minimize labeling errors—visualize your inputs to check for anomalies, and
proofread your labels.

 Clean your data and deal with missing values (we’ll cover this in the next chapter).
 If you have many features and you aren’t sure which ones are actually useful, do

feature selection.

A particularly important way to improve the generalization potential of your data is
feature engineering. For most machine learning problems, feature engineering is a key
ingredient for success. Let’s take a look.

Figure 5.15 Validation loss for a model with appropriate capacity

143Improving generalization

5.4.2 Feature engineering

Feature engineering is the process of using your own knowledge about the data and about
the machine learning algorithm at hand (in this case, a neural network) to make the
algorithm work better by applying hardcoded (non-learned) transformations to the
data before it goes into the model. In many cases, it isn’t reasonable to expect a
machine learning model to be able to learn from completely arbitrary data. The data
needs to be presented to the model in a way that will make the model’s job easier.

 Let’s look at an intuitive example. Suppose you’re trying to develop a model that
can take as input an image of a clock and can output the time of day (see figure 5.16).

If you choose to use the raw pixels of the image as input data, you have a difficult
machine learning problem on your hands. You’ll need a convolutional neural net-
work to solve it, and you’ll have to expend quite a bit of computational resources to
train the network.

 But if you already understand the problem at a high level (you understand how
humans read time on a clock face), you can come up with much better input features
for a machine learning algorithm: for instance, it’s easy to write a five-line Python
script to follow the black pixels of the clock hands and output the (x, y) coordinates
of the tip of each hand. Then a simple machine learning algorithm can learn to asso-
ciate these coordinates with the appropriate time of day.

 You can go even further: do a coordinate change, and express the (x, y) coordi-
nates as polar coordinates with regard to the center of the image. Your input will
become the angle theta of each clock hand. At this point, your features are making
the problem so easy that no machine learning is required; a simple rounding opera-
tion and dictionary lookup are enough to recover the approximate time of day.

 That’s the essence of feature engineering: making a problem easier by expressing
it in a simpler way. Make the latent manifold smoother, simpler, better organized.
Doing so usually requires understanding the problem in depth.

Raw data:

pixel grid

Better

features:

clock hands’

coordinates

{x1: 0.7,

y1: 0.7}

{x2: 0.5,

y2: 0.0}

{x1: 0.0,

y2: 1.0}

{x2: -0.38,

y2: 0.32}

Even better

features:

angles of

clock hands

theta1: 45

theta2: 0

theta1: 90

theta2: 140
Figure 5.16 Feature engineering
for reading the time on a clock

144 CHAPTER 5 Fundamentals of machine learning

 Before deep learning, feature engineering used to be the most important part of
the machine learning workflow, because classical shallow algorithms didn’t have
hypothesis spaces rich enough to learn useful features by themselves. The way you pre-
sented the data to the algorithm was absolutely critical to its success. For instance,
before convolutional neural networks became successful on the MNIST digit-classifi-
cation problem, solutions were typically based on hardcoded features such as the
number of loops in a digit image, the height of each digit in an image, a histogram of
pixel values, and so on.

 Fortunately, modern deep learning removes the need for most feature engineer-
ing, because neural networks are capable of automatically extracting useful features
from raw data. Does this mean you don’t have to worry about feature engineering as
long as you’re using deep neural networks? No, for two reasons:

 Good features still allow you to solve problems more elegantly while using fewer
resources. For instance, it would be ridiculous to solve the problem of reading a
clock face using a convolutional neural network.

 Good features let you solve a problem with far less data. The ability of deep
learning models to learn features on their own relies on having lots of training
data available; if you have only a few samples, the information value in their fea-
tures becomes critical.

5.4.3 Using early stopping

In deep learning, we always use models that are vastly overparameterized: they have
way more degrees of freedom than the minimum necessary to fit to the latent mani-
fold of the data. This overparameterization is not an issue, because you never fully fit a
deep learning model. Such a fit wouldn’t generalize at all. You will always interrupt train-
ing long before you’ve reached the minimum possible training loss.

 Finding the exact point during training where you’ve reached the most generaliz-
able fit—the exact boundary between an underfit curve and an overfit curve—is one
of the most effective things you can do to improve generalization.

 In the examples in the previous chapter, we would start by training our models for
longer than needed to figure out the number of epochs that yielded the best valida-
tion metrics, and then we would retrain a new model for exactly that number of
epochs. This is pretty standard, but it requires you to do redundant work, which can
sometimes be expensive. Naturally, you could just save your model at the end of each
epoch, and once you’ve found the best epoch, reuse the closest saved model you have.
In Keras, it’s typical to do this with an EarlyStopping callback, which will interrupt
training as soon as validation metrics have stopped improving, while remembering the
best known model state. You’ll learn to use callbacks in chapter 7.

145Improving generalization

5.4.4 Regularizing your model

Regularization techniques are a set of best practices that actively impede the model’s abil-
ity to fit perfectly to the training data, with the goal of making the model perform bet-
ter during validation. This is called “regularizing” the model, because it tends to make
the model simpler, more “regular,” its curve smoother, more “generic”; thus it is less
specific to the training set and better able to generalize by more closely approximat-
ing the latent manifold of the data.

 Keep in mind that regularizing a model is a process that should always be guided
by an accurate evaluation procedure. You will only achieve generalization if you can
measure it.

 Let’s review some of the most common regularization techniques and apply them
in practice to improve the movie-classification model from chapter 4.

REDUCING THE NETWORK’S SIZE

You’ve already learned that a model that is too small will not overfit. The simplest way
to mitigate overfitting is to reduce the size of the model (the number of learnable
parameters in the model, determined by the number of layers and the number of
units per layer). If the model has limited memorization resources, it won’t be able to
simply memorize its training data; thus, in order to minimize its loss, it will have to
resort to learning compressed representations that have predictive power regarding
the targets—precisely the type of representations we’re interested in. At the same
time, keep in mind that you should use models that have enough parameters that they
don’t underfit: your model shouldn’t be starved for memorization resources. There is
a compromise to be found between too much capacity and not enough capacity.

 Unfortunately, there is no magical formula to determine the right number of layers
or the right size for each layer. You must evaluate an array of different architectures (on
your validation set, not on your test set, of course) in order to find the correct model
size for your data. The general workflow for finding an appropriate model size is to start
with relatively few layers and parameters, and increase the size of the layers or add new
layers until you see diminishing returns with regard to validation loss.

 Let’s try this on the movie-review classification model. The following listing shows
our original model.

from tensorflow.keras.datasets import imdb
(train_data, train_labels), _ = imdb.load_data(num_words=10000)

def vectorize_sequences(sequences, dimension=10000):
 results = np.zeros((len(sequences), dimension))
 for i, sequence in enumerate(sequences):
 results[i, sequence] = 1.
 return results
train_data = vectorize_sequences(train_data)

Listing 5.10 Original model

146 CHAPTER 5 Fundamentals of machine learning

model = keras.Sequential([
 layers.Dense(16, activation="relu"),
 layers.Dense(16, activation="relu"),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
history_original = model.fit(train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

Now let’s try to replace it with this smaller model.

model = keras.Sequential([
 layers.Dense(4, activation="relu"),
 layers.Dense(4, activation="relu"),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
history_smaller_model = model.fit(
 train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

Figure 5.17 shows a comparison of the validation losses of the original model and the
smaller model.

Listing 5.11 Version of the model with lower capacity

Figure 5.17 Original model vs. smaller model on IMDB review classification

147Improving generalization

As you can see, the smaller model starts overfitting later than the reference model
(after six epochs rather than four), and its performance degrades more slowly once it
starts overfitting.

 Now, let’s add to our benchmark a model that has much more capacity—far more
than the problem warrants. While it is standard to work with models that are signifi-
cantly overparameterized for what they’re trying to learn, there can definitely be such
a thing as too much memorization capacity. You’ll know your model is too large if it
starts overfitting right away and if its validation loss curve looks choppy with high-
variance (although choppy validation metrics could also be a symptom of using an
unreliable validation process, such as a validation split that’s too small).

model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(512, activation="relu"),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
history_larger_model = model.fit(
 train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

Figure 5.18 shows how the bigger model fares compared with the reference model.

Listing 5.12 Version of the model with higher capacity

Figure 5.18 Original model vs. much larger model on IMDB review
classification

148 CHAPTER 5 Fundamentals of machine learning

The bigger model starts overfitting almost immediately, after just one epoch, and it
overfits much more severely. Its validation loss is also noisier. It gets training loss near
zero very quickly. The more capacity the model has, the more quickly it can model the
training data (resulting in a low training loss), but the more susceptible it is to overfit-
ting (resulting in a large difference between the training and validation loss).

ADDING WEIGHT REGULARIZATION

You may be familiar with the principle of Occam’s razor : given two explanations for
something, the explanation most likely to be correct is the simplest one—the one that
makes fewer assumptions. This idea also applies to the models learned by neural net-
works: given some training data and a network architecture, multiple sets of weight
values (multiple models) could explain the data. Simpler models are less likely to over-
fit than complex ones.

 A simple model in this context is a model where the distribution of parameter values
has less entropy (or a model with fewer parameters, as you saw in the previous sec-
tion). Thus, a common way to mitigate overfitting is to put constraints on the com-
plexity of a model by forcing its weights to take only small values, which makes the
distribution of weight values more regular. This is called weight regularization, and it’s
done by adding to the loss function of the model a cost associated with having large
weights. This cost comes in two flavors:

 L1 regularization—The cost added is proportional to the absolute value of the
weight coefficients (the L1 norm of the weights).

 L2 regularization—The cost added is proportional to the square of the value of the
weight coefficients (the L2 norm of the weights). L2 regularization is also called
weight decay in the context of neural networks. Don’t let the different name con-
fuse you: weight decay is mathematically the same as L2 regularization.

In Keras, weight regularization is added by passing weight regularizer instances to layers
as keyword arguments. Let’s add L2 weight regularization to our initial movie-review
classification model.

from tensorflow.keras import regularizers
model = keras.Sequential([
 layers.Dense(16,
 kernel_regularizer=regularizers.l2(0.002),
 activation="relu"),
 layers.Dense(16,
 kernel_regularizer=regularizers.l2(0.002),
 activation="relu"),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])

Listing 5.13 Adding L2 weight regularization to the model

149Improving generalization

history_l2_reg = model.fit(
 train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

In the preceding listing, l2(0.002) means every coefficient in the weight matrix of
the layer will add 0.002 * weight_coefficient_value ** 2 to the total loss of the
model. Note that because this penalty is only added at training time, the loss for this
model will be much higher at training than at test time.

 Figure 5.19 shows the impact of the L2 regularization penalty. As you can see, the
model with L2 regularization has become much more resistant to overfitting than the
reference model, even though both models have the same number of parameters.

As an alternative to L2 regularization, you can use one of the following Keras weight
regularizers.

from tensorflow.keras import regularizers
regularizers.l1(0.001)
regularizers.l1_l2(l1=0.001, l2=0.001)

Note that weight regularization is more typically used for smaller deep learning mod-
els. Large deep learning models tend to be so overparameterized that imposing con-
straints on weight values hasn’t much impact on model capacity and generalization. In
these cases, a different regularization technique is preferred: dropout.

Listing 5.14 Different weight regularizers available in Keras

Figure 5.19 Effect of L2 weight regularization on validation loss

L1 regularization

Simultaneous L1 and
L2 regularization

150 CHAPTER 5 Fundamentals of machine learning

ADDING DROPOUT

Dropout is one of the most effective and most commonly used regularization tech-
niques for neural networks; it was developed by Geoff Hinton and his students at the
University of Toronto. Dropout, applied to a layer, consists of randomly dropping out
(setting to zero) a number of output features of the layer during training. Let’s say a
given layer would normally return a vector [0.2, 0.5, 1.3, 0.8, 1.1] for a given
input sample during training. After applying dropout, this vector will have a few zero
entries distributed at random: for example, [0, 0.5, 1.3, 0, 1.1]. The dropout rate
is the fraction of the features that are zeroed out; it’s usually set between 0.2 and 0.5.
At test time, no units are dropped out; instead, the layer’s output values are scaled
down by a factor equal to the dropout rate, to balance for the fact that more units are
active than at training time.

 Consider a NumPy matrix containing the output of a layer, layer_output, of
shape (batch_size, features). At training time, we zero out at random a fraction of
the values in the matrix:

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)

At test time, we scale down the output by the dropout rate. Here, we scale by 0.5
(because we previously dropped half the units):

layer_output *= 0.5

Note that this process can be implemented by doing both operations at training time
and leaving the output unchanged at test time, which is often the way it’s imple-
mented in practice (see figure 5.20):

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)
layer_output /= 0.5

This technique may seem strange and arbitrary. Why would this help reduce overfit-
ting? Hinton says he was inspired by, among other things, a fraud-prevention mecha-
nism used by banks. In his own words, “I went to my bank. The tellers kept changing
and I asked one of them why. He said he didn’t know but they got moved around a lot.

At training time, drops out 50% of the units in the output

At test time

At training time

Note that we’re scaling up rather
than scaling down in this case.

0.3

* 2

0.6

0.2

0.7

0.2

0.1

1.9

0.5

1.5

0.0

0.3

1.0

0.0

0.3

1.2

0.0

0.0

50%

dropout 0.6

0.0

0.7

0.2

0.1

1.9

0.0

1.5

0.0

0.3

0.0

0.0

0.3

0.0

0.0

Figure 5.20 Dropout applied to
an activation matrix at training
time, with rescaling happening
during training. At test time the
activation matrix is unchanged.

151Improving generalization

I figured it must be because it would require cooperation between employees to suc-
cessfully defraud the bank. This made me realize that randomly removing a different
subset of neurons on each example would prevent conspiracies and thus reduce over-
fitting.” The core idea is that introducing noise in the output values of a layer can
break up happenstance patterns that aren’t significant (what Hinton refers to as con-
spiracies), which the model will start memorizing if no noise is present.

 In Keras, you can introduce dropout in a model via the Dropout layer, which is
applied to the output of the layer right before it. Let’s add two Dropout layers in the
IMDB model to see how well they do at reducing overfitting.

model = keras.Sequential([
 layers.Dense(16, activation="relu"),
 layers.Dropout(0.5),
 layers.Dense(16, activation="relu"),
 layers.Dropout(0.5),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
history_dropout = model.fit(
 train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

Figure 5.21 shows a plot of the results. This is a clear improvement over the reference
model—it also seems to be working much better than L2 regularization, since the low-
est validation loss reached has improved.

Listing 5.15 Adding dropout to the IMDB model

Figure 5.21 Effect of dropout on validation loss

152 CHAPTER 5 Fundamentals of machine learning

To recap, these are the most common ways to maximize generalization and prevent
overfitting in neural networks:

 Get more training data, or better training data.
 Develop better features.
 Reduce the capacity of the model.
 Add weight regularization (for smaller models).
 Add dropout.

Summary
 The purpose of a machine learning model is to generalize: to perform accurately

on never-before-seen inputs. It’s harder than it seems.
 A deep neural network achieves generalization by learning a parametric model

that can successfully interpolate between training samples—such a model can be
said to have learned the “latent manifold” of the training data. This is why deep
learning models can only make sense of inputs that are very close to what
they’ve seen during training.

 The fundamental problem in machine learning is the tension between optimization
and generalization: to attain generalization, you must first achieve a good fit to
the training data, but improving your model’s fit to the training data will inevi-
tably start hurting generalization after a while. Every single deep learning best
practice deals with managing this tension.

 The ability of deep learning models to generalize comes from the fact that they
manage to learn to approximate the latent manifold of their data, and can thus
make sense of new inputs via interpolation.

 It’s essential to be able to accurately evaluate the generalization power of your
model while you’re developing it. You have at your disposal an array of evalua-
tion methods, from simple holdout validation to K-fold cross-validation and
iterated K-fold cross-validation with shuffling. Remember to always keep a com-
pletely separate test set for final model evaluation, since information leaks from
your validation data to your model may have occurred.

 When you start working on a model, your goal is first to achieve a model that
has some generalization power and that can overfit. Best practices for doing
this include tuning your learning rate and batch size, leveraging better architec-
ture priors, increasing model capacity, or simply training longer.

 As your model starts overfitting, your goal switches to improving generalization
through model regularization. You can reduce your model’s capacity, add dropout
or weight regularization, and use early stopping. And naturally, a larger or bet-
ter dataset is always the number one way to help a model generalize.

