The unwersal workflow
of machine learning

This chapter covers

= Steps for framing a machine learning problem
= Steps for developing a working model

= Steps for deploying your model in production and
maintaining it

Our previous examples have assumed that we already had a labeled dataset to start
from, and that we could immediately start training a model. In the real world, this
is often not the case. You don’t start from a dataset, you start from a problem.
Imagine that you're starting your own machine learning consulting shop. You
incorporate, you put up a fancy website, you notify your network. The projects start
rolling in:
A personalized photo search engine for a picture-sharing social network—
type in “wedding” and retrieve all the pictures you took at weddings, without
any manual tagging needed.
Flagging spam and offensive text content among the posts of a budding
chat app.
Building a music recommendation system for users of an online radio.
Detecting credit card fraud for an e-commerce website.

153

154

CHAPTER 6 The universal workflow of machine learning

Predicting display ad click-through rate to decide which ad to serve to a given
user at a given time.

Flagging anomalous cookies on the conveyor belt of a cookie-manufacturing line.
Using satellite images to predict the location of as-yet unknown archeological sites.

Note on ethics

You may sometimes be offered ethically dubious projects, such as “building an Al
that rates the trustworthiness of someone from a picture of their face.” First of all,
the validity of the project is in doubt: it isn't clear why trustworthiness would be
reflected on someone’s face. Second, such a task opens the door to all kinds of eth-
ical problems. Collecting a dataset for this task would amount to recording the biases
and prejudices of the people who label the pictures. The models you would train on
such data would merely encode these same biases into a black-box algorithm that
would give them a thin veneer of legitimacy. In a largely tech-illiterate society like
ours, “the Al algorithm said this person cannot be trusted” strangely appears to carry
more weight and objectivity than “John Smith said this person cannot be trusted,”
despite the former being a learned approximation of the latter. Your model would be
laundering and operationalizing at scale the worst aspects of human judgement, with
negative effects on the lives of real people.

Technology is never neutral. If your work has any impact on the world, this impact has
a moral direction: technical choices are also ethical choices. Always be deliberate
about the values you want your work to support.

It would be very convenient if you could import the correct dataset from keras.data-
sets and start fitting some deep learning models. Unfortunately, in the real world
you’ll have to start from scratch.
In this chapter, you'll learn about a universal step-by-step blueprint that you can
use to approach and solve any machine learning problem, like those in the previous
list. This template will bring together and consolidate everything you’ve learned in
chapters 4 and 5, and will give you the wider context that should anchor what you’ll
learn in the next chapters.

The universal workflow of machine learning is broadly structured in three parts:

Define the task—Understand the problem domain and the business logic under-
lying what the customer asked for. Collect a dataset, understand what the data
represents, and choose how you will measure success on the task.

Develop a model—Prepare your data so that it can be processed by a machine
learning model, select a model evaluation protocol and a simple baseline to
beat, train a first model that has generalization power and that can overfit, and
then regularize and tune your model until you achieve the best possible gener-
alization performance.

Deploy the model—Present your work to stakeholders, ship the model to a web
server, a mobile app, a web page, or an embedded device, monitor the model’s

6.1

6.1.1

Define the task 155

performance in the wild, and start collecting the data you’ll need to build the
next-generation model.

Let’s dive in.

Define the task

You can’t do good work without a deep understanding of the context of what you’re
doing. Why is your customer trying to solve this particular problem? What value will
they derive from the solution—how will your model be used, and how will it fit into
your customer’s business processes? What kind of data is available, or could be col-
lected? What kind of machine learning task can be mapped to the business problem?

Frame the problem

Framing a machine learning problem usually involves many detailed discussions with
stakeholders. Here are the questions that should be on the top of your mind:

What will your input data be? What are you trying to predict? You can only
learn to predict something if you have training data available: for example,
you can only learn to classify the sentiment of movie reviews if you have both
movie reviews and sentiment annotations available. As such, data availability
is usually the limiting factor at this stage. In many cases, you will have to
resort to collecting and annotating new datasets yourself (which we’ll cover
in the next section).

What type of machine learning task are you facing? Is it binary classification?

Multiclass classification? Scalar regression? Vector regression? Multiclass, multi-

label classification? Image segmentation? Ranking? Something else, like cluster-

ing, generation, or reinforcement learning? In some cases, it may be that
machine learning isn’t even the best way to make sense of the data, and you
should use something else, such as plain old-school statistical analysis.

— The photo search engine project is a multiclass, multilabel classification task.

— The spam detection project is a binary classification task. If you set “offensive
content” as a separate class, it’s a three-way classification task.

— The music recommendation engine turns out to be better handled not via
deep learning, but via matrix factorization (collaborative filtering).

— The credit card fraud detection project is a binary classification task.

— The click-through-rate prediction project is a scalar regression task.

— Anomalous cookie detection is a binary classification task, but it will also
require an object detection model as a first stage in order to correctly crop
out the cookies in raw images. Note that the set of machine learning tech-
niques known as “anomaly detection” would not be a good fit in this setting!

— The project for finding new archeological sites from satellite images is an
image-similarity ranking task: you need to retrieve new images that look the
most like known archeological sites.

156

6.1.2

CHAPTER 6 The universal workflow of machine learning

What do existing solutions look like? Perhaps your customer already has a
handcrafted algorithm that handles spam filtering or credit card fraud detec-
tion, with lots of nested if statements. Perhaps a human is currently in charge
of manually handling the process under consideration—monitoring the con-
veyor belt at the cookie plant and manually removing the bad cookies, or craft-
ing playlists of song recommendations to be sent out to users who liked a
specific artist. You should make sure you understand what systems are already in
place and how they work.

Are there particular constraints you will need to deal with? For example, you
could find out that the app for which you’re building a spam detection system is
strictly end-to-end encrypted, so that the spam detection model will have to live
on the end user’s phone and must be trained on an external dataset. Perhaps
the cookie-filtering model has such latency constraints that it will need to run
on an embedded device at the factory rather than on a remote server. You
should understand the full context in which your work will fit.

Once you’ve done your research, you should know what your inputs will be, what your
targets will be, and what broad type of machine learning task the problem maps to. Be
aware of the hypotheses you’re making at this stage:

You hypothesize that your targets can be predicted given your inputs.
You hypothesize that the data that’s available (or that you will soon collect) is
sufficiently informative to learn the relationship between inputs and targets.

Until you have a working model, these are merely hypotheses, waiting to be validated
or invalidated. Not all problems can be solved with machine learning; just because
you’ve assembled examples of inputs X and targets Y doesn’t mean X contains enough
information to predict Y. For instance, if you're trying to predict the movements of a
stock on the stock market given its recent price history, you're unlikely to succeed,
because price history doesn’t contain much predictive information.

Collect a dataset

Once you understand the nature of the task and you know what your inputs and tar-
gets are going to be, it’s time for data collection—the most arduous, time-consuming,
and costly part of most machine learning projects.

The photo search engine project requires you to first select the set of labels you
want to classify—you settle on 10,000 common image categories. Then you
need to manually tag hundreds of thousands of your past user-uploaded images
with labels from this set.

For the chat app’s spam detection project, because user chats are end-to-end
encrypted, you cannot use their contents for training a model. You need to gain
access to a separate dataset of tens of thousands of unfiltered social media
posts, and manually tag them as spam, offensive, or acceptable.

Define the task 157

For the music recommendation engine, you can just use the “likes” of your
users. No new data needs to be collected. Likewise for the click-through-rate
prediction project: you have an extensive record of click-through rate for your
past ads, going back years.

For the cookie-flagging model, you will need to install cameras above the con-
veyor belts to collect tens of thousands of images, and then someone will need
to manually label these images. The people who know how to do this currently
work at the cookie factory, but it doesn’t seem too difficult. You should be able
to train people to do it.

The satellite imagery project will require a team of archeologists to collect a
database of existing sites of interest, and for each site you will need to find exist-
ing satellite images taken in different weather conditions. To get a good model,
you’re going to need thousands of different sites.

You learned in chapter 5 that a model’s ability to generalize comes almost entirely
from the properties of the data it is trained on—the number of data points you have,
the reliability of your labels, the quality of your features. A good dataset is an asset wor-
thy of care and investment. If you get an extra 50 hours to spend on a project, chances
are that the most effective way to allocate them is to collect more data rather than
search for incremental modeling improvements.

The point that data matters more than algorithms was most famously made in a
2009 paper by Google researchers titled “The Unreasonable Effectiveness of Data”
(the title is a riff on the well-known 1960 article “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences” by Eugene Wigner). This was before deep learn-
ing was popular, but, remarkably, the rise of deep learning has only made the impor-
tance of data greater.

If you're doing supervised learning, then once you've collected inputs (such as
images) you're going to need annotations for them (such as tags for those images)—
the targets you will train your model to predict. Sometimes, annotations can be retrieved
automatically, such as those for the music recommendation task or the click-through-
rate prediction task. But often you have to annotate your data by hand. This is a labor-
heavy process.

INVESTING IN DATA ANNOTATION INFRASTRUCTURE

Your data annotation process will determine the quality of your targets, which in turn
determine the quality of your model. Carefully consider the options you have available:

Should you annotate the data yourself?
Should you use a crowdsourcing platform like Mechanical Turk to collect labels?

Should you use the services of a specialized data-labeling company?

Outsourcing can potentially save you time and money, but it takes away control. Using
something like Mechanical Turk is likely to be inexpensive and to scale well, but your
annotations may end up being quite noisy.

158

CHAPTER 6 The universal workflow of machine learning

To pick the best option, consider the constraints you’re working with:

Do the data labelers need to be subject matter experts, or could anyone anno-
tate the data? The labels for a cat-versus-dog image classification problem can
be selected by anyone, but those for a dog breed classification task require spe-
cialized knowledge. Meanwhile, annotating CT scans of bone fractures pretty
much requires a medical degree.

If annotating the data requires specialized knowledge, can you train people to
do it? If not, how can you get access to relevant experts?

Do you, yourself, understand the way experts come up with the annotations? If
you don’t, you will have to treat your dataset as a black box, and you won’t be able
to perform manual feature engineering—this isn’t critical, but it can be limiting.

If you decide to label your data in-house, ask yourself what software you will use to record
annotations. You may well need to develop that software yourself. Productive data anno-
tation software will save you a lot of time, so it’s worth investing in it early in a project.

BEWARE OF NON-REPRESENTATIVE DATA

Machine learning models can only make sense of inputs that are similar to what
they’ve seen before. As such, it’s critical that the data used for training should be repre-
sentative of the production data. This concern should be the foundation of all your
data collection work.

Suppose you’re developing an app where users can take pictures of a plate of food to
find out the name of the dish. You train a model using pictures from an image-sharing
social network that’s popular with foodies. Come deployment time, feedback from
angry users starts rolling in: your app gets the answer wrong 8 times out of 10. What'’s
going on? Your accuracy on the test set was well over 90%! A quick look at user-uploaded
data reveals that mobile picture uploads of random dishes from random restaurants
taken with random smartphones look nothing like the professional-quality, well-lit,
appetizing pictures you trained the model on: your training data wasn’t representative of the
production data. That’s a cardinal sin—welcome to machine learning hell.

If possible, collect data directly from the environment where your model will be
used. A movie review sentiment classification model should be used on new IMDB
reviews, not on Yelp restaurant reviews, nor on Twitter status updates. If you want to
rate the sentiment of a tweet, start by collecting and annotating actual tweets from a
similar set of users as those you’re expecting in production. If it’s not possible to train
on production data, then make sure you fully understand how your training and pro-
duction data differ, and that you are actively correcting for these differences.

A related phenomenon you should be aware of is concept drift. You’ll encounter
concept drift in almost all real-world problems, especially those that deal with user-
generated data. Concept drift occurs when the properties of the production data
change over time, causing model accuracy to gradually decay. A music recommenda-
tion engine trained in the year 2013 may not be very effective today. Likewise, the
IMDB dataset you worked with was collected in 2011, and a model trained on it would

Define the task 159

likely not perform as well on reviews from 2020 compared to reviews from 2012, as
vocabulary, expressions, and movie genres evolve over time. Concept drift is particu-
larly acute in adversarial contexts like credit card fraud detection, where fraud pat-
terns change practically every day. Dealing with fast concept drift requires constant
data collection, annotation, and model retraining.

Keep in mind that machine learning can only be used to memorize patterns that
are present in your training data. You can only recognize what you’ve seen before.
Using machine learning trained on past data to predict the future is making the
assumption that the future will behave like the past. That often isn’t the case.

The problem of sampling bias

A particularly insidious and common case of non-representative data is sampling
bias. Sampling bias occurs when your data collection process interacts with what
you are trying to predict, resulting in biased measurements. A famous historical
example occurred in the 1948 US presidential election. On election night, the Chi-
cago Tribune printed the headline “DEWEY DEFEATS TRUMAN.” The next morning,
Truman emerged as the winner. The editor of the Tribune had trusted the results of
a phone survey—but phone users in 1948 were not a random, representative sam-
ple of the voting population. They were more likely to be richer, conservative, and
to vote for Dewey, the Republican candidate.

Chicago Maily Tribune

DEWEY DEFEATS TRUMAN

icated In State; Boyle Leads in

“DEWEY DEFEATS TRUMAN”: A famous example of sampling bias

Nowadays, every phone survey takes sampling bias into account. That doesn’t mean
that sampling bias is a thing of the past in political polling—far from it. But unlike in
1948, pollsters are aware of it and take steps to correct it.

160

6.1.3

6.1.4

CHAPTER 6 The universal workflow of machine learning

Understand your data

It’s pretty bad practice to treat a dataset as a black box. Before you start training mod-
els, you should explore and visualize your data to gain insights about what makes it
predictive, which will inform feature engineering and screen for potential issues.

If your data includes images or natural language text, take a look at a few sam-
ples (and their labels) directly.

If your data contains numerical features, it’s a good idea to plot the histogram
of feature values to get a feel for the range of values taken and the frequency of
different values.

If your data includes location information, plot it on a map. Do any clear pat-
terns emerge?

Are some samples missing values for some features? If so, you’ll need to deal
with this when you prepare the data (we’ll cover how to do this in the next
section).

If your task is a classification problem, print the number of instances of each
class in your data. Are the classes roughly equally represented? If not, you will
need to account for this imbalance.

Check for target leaking: the presence of features in your data that provide infor-
mation about the targets and which may not be available in production. If
you’re training a model on medical records to predict whether someone will be
treated for cancer in the future, and the records include the feature “this per-
son has been diagnosed with cancer,” then your targets are being artificially
leaked into your data. Always ask yourself, is every feature in your data some-
thing that will be available in the same form in production?

Choose a measure of success

To control something, you need to be able to observe it. To achieve success on a proj-
ect, you must first define what you mean by success. Accuracy? Precision and recall?
Customer retention rate? Your metric for success will guide all of the technical choices
you make throughout the project. It should directly align with your higher-level goals,
such as the business success of your customer.

For balanced classification problems, where every class is equally likely, accuracy
and the area under a receiver operating characteristic (ROC) curve, abbreviated as ROC
AUC, are common metrics. For class-imbalanced problems, ranking problems, or
multilabel classification, you can use precision and recall, as well as a weighted form of
accuracy or ROC AUC. And it isn’t uncommon to have to define your own custom
metric by which to measure success. To get a sense of the diversity of machine learning
success metrics and how they relate to different problem domains, it’s helpful to
browse the data science competitions on Kaggle (https://kaggle.com); they showcase a
wide range of problems and evaluation metrics.

https://kaggle.com

6.2

6.2.1

Develop a model 161

Develop a model

Once you know how you will measure your progress, you can get started with model
development. Most tutorials and research projects assume that this is the only step—
skipping problem definition and dataset collection, which are assumed already done,
and skipping model deployment and maintenance, which are assumed to be handled
by someone else. In fact, model development is only one step in the machine learning
workflow, and if you ask me, it’s not the most difficult one. The hardest things in
machine learning are framing problems and collecting, annotating, and cleaning
data. So cheer up—what comes next will be easy in comparison!

Prepare the data

As you’ve learned before, deep learning models typically don’t ingest raw data. Data
preprocessing aims at making the raw data at hand more amenable to neural net-
works. This includes vectorization, normalization, or handling missing values. Many
preprocessing techniques are domain-specific (for example, specific to text data or
image data); we’ll cover those in the following chapters as we encounter them in
practical examples. For now, we’ll review the basics that are common to all data
domains.

VECTORIZATION

All inputs and targets in a neural network must typically be tensors of floating-point
data (or, in specific cases, tensors of integers or strings). Whatever data you need to
process—sound, images, text—you must first turn into tensors, a step called data vec-
torization. For instance, in the two previous text-classification examples in chapter 4,
we started with text represented as lists of integers (standing for sequences of words),
and we used one-hot encoding to turn them into a tensor of float32 data. In the
examples of classifying digits and predicting house prices, the data came in vectorized
form, so we were able to skip this step.

VALUE NORMALIZATION

In the MNIST digit-classification example from chapter 2, we started with image data
encoded as integers in the 0-255 range, encoding grayscale values. Before we fed this
data into our network, we had to cast it to float32 and divide by 255 so we’d end up
with floating-point values in the 0-1 range. Similarly, when predicting house prices, we
started with features that took a variety of ranges—some features had small floating-
point values, and others had fairly large integer values. Before we fed this data into
our network, we had to normalize each feature independently so that it had a stan-
dard deviation of 1 and a mean of 0.

In general, it isn’t safe to feed into a neural network data that takes relatively
large values (for example, multi-digit integers, which are much larger than the ini-
tial values taken by the weights of a network) or data that is heterogeneous (for
example, data where one feature is in the range 0-1 and another is in the range
100-200). Doing so can trigger large gradient updates that will prevent the network

162

6.2.2

CHAPTER 6 The universal workflow of machine learning

from converging. To make learning easier for your network, your data should have
the following characteristics:

Take small values—Typically, most values should be in the 0-1 range.
Be homogenous—All features should take values in roughly the same range.

Additionally, the following stricter normalization practice is common and can help,
although it isn’t always necessary (for example, we didn’t do this in the digit-classifica-
tion example):

Normalize each feature independently to have a mean of 0.
Normalize each feature independently to have a standard deviation of 1.

This is easy to do with NumPy arrays:

x -= x.mean(axis=0) Assuming x is a 2D data matrix
x /= x.std(axis=0) of shape (samples, features)

HANDLING MISSING VALUES
You may sometimes have missing values in your data. For instance, in the house-price
example, the first feature (the column of index 0 in the data) was the per capita crime
rate. What if this feature wasn’t available for all samples? You’d then have missing val-
ues in the training or test data.

You could just discard the feature entirely, but you don’t necessarily have to.

If the feature is categorical, it’s safe to create a new category that means “the
value is missing.” The model will automatically learn what this implies with
respect to the targets.

If the feature is numerical, avoid inputting an arbitrary value like "0", because
it may create a discontinuity in the latent space formed by your features, mak-
ing it harder for a model trained on it to generalize. Instead, consider replac-
ing the missing value with the average or median value for the feature in the
dataset. You could also train a model to predict the feature value given the val-
ues of other features.

Note that if you're expecting missing categorial features in the test data, but the network
was trained on data without any missing values, the network won’t have learned to
ignore missing values! In this situation, you should artificially generate training samples
with missing entries: copy some training samples several times, and drop some of the
categorical features that you expect are likely to be missing in the test data.

Choose an evaluation protocol

As you learned in the previous chapter, the purpose of a model is to achieve general-
ization, and every modeling decision you will make throughout the model develop-
ment process will be guided by validation metrics that seek to measure generalization
performance. The goal of your validation protocol is to accurately estimate what your

6.2.3

Develop a model 163

success metric of choice (such as accuracy) will be on actual production data. The reli-
ability of that process is critical to building a useful model.
In chapter 5, we reviewed three common evaluation protocols:

Maintaining a holdout validation set—This is the way to go when you have plenty
of data.

Doing K-fold cross-validation—This is the right choice when you have too few sam-
ples for holdout validation to be reliable.

Doing iterated K-fold validation—This is for performing highly accurate model
evaluation when little data is available.

Pick one of these. In most cases, the first will work well enough. As you learned,
though, always be mindful of the representativity of your validation set, and be careful
not to have redundant samples between your training set and your validation set.

Beat a baseline

As you start working on the model itself, your initial goal is to achieve statistical power,
as you saw in chapter b: that is, to develop a small model that is capable of beating a
simple baseline.

At this stage, these are the three most important things you should focus on:

Feature engineering—TFilter out uninformative features (feature selection) and use
your knowledge of the problem to develop new features that are likely to be useful.
Selecting the correct architecture priors—What type of model architecture will you
use? A densely connected network, a convnet, a recurrent neural network, a
Transformer? Is deep learning even a good approach for the task, or should you
use something else?

Selecting a good-enough training configuration—What loss function should you use?
What batch size and learning rate?

Picking the right loss function

It’s often not possible to directly optimize for the metric that measures success on
a problem. Sometimes there is no easy way to turn a metric into a loss function; loss
functions, after all, need to be computable given only a mini-batch of data (ideally, a
loss function should be computable for as little as a single data point) and must be
differentiable (otherwise, you can’t use backpropagation to train your network). For
instance, the widely used classification metric ROC AUC can’t be directly optimized.
Hence, in classification tasks, it’'s common to optimize for a proxy metric of ROC AUC,
such as crossentropy. In general, you can hope that the lower the crossentropy gets,
the higher the ROC AUC will be.

The following table can help you choose a last-layer activation and a loss function for
a few common problem types.

164

6.24

CHAPTER 6 The universal workflow of machine learning

(continued)

Choosing the right last-layer activation and loss function for your model

Problem type Last-layer activation Loss function
Binary classification sigmoid binary crossentropy
Multiclass, single-label classification softmax categorical crossentropy
Multiclass, multilabel classification sigmoid binary crossentropy

For most problems, there are existing templates you can start from. You're not the
first person to try to build a spam detector, a music recommendation engine, or an
image classifier. Make sure you research prior art to identify the feature engineering
techniques and model architectures that are most likely to perform well on your task.

Note that it’s not always possible to achieve statistical power. If you can’t beat a sim-
ple baseline after trying multiple reasonable architectures, it may be that the answer
to the question you’re asking isn’t present in the input data. Remember that you’re
making two hypotheses:

You hypothesize that your outputs can be predicted given your inputs.
You hypothesize that the available data is sufficiently informative to learn the
relationship between inputs and outputs.

It may well be that these hypotheses are false, in which case you must go back to the
drawing board.

Scale up: Develop a model that overfits

Once you've obtained a model that has statistical power, the question becomes, is your
model sufficiently powerful? Does it have enough layers and parameters to properly
model the problem at hand? For instance, a logistic regression model has statistical
power on MNIST but wouldn’t be sufficient to solve the problem well. Remember that
the universal tension in machine learning is between optimization and generalization.
The ideal model is one that stands right at the border between underfitting and over-
fitting, between undercapacity and overcapacity. To figure out where this border lies,
first you must cross it.

To figure out how big a model you'll need, you must develop a model that overfits.
This is fairly easy, as you learned in chapter 5:

Add layers.
Make the layers bigger.
Train for more epochs.
Always monitor the training loss and validation loss, as well as the training and valida-

tion values for any metrics you care about. When you see that the model’s perfor-
mance on the validation data begins to degrade, you've achieved overfitting.

6.2.5

6.3

6.3.1

Deploy the model 165

Regularize and tune your model

Once you’ve achieved statistical power and you’re able to overfit, you know you’re on the
right path. At this point, your goal becomes to maximize generalization performance.
This phase will take the most time: you'll repeatedly modify your model, train it,
evaluate on your validation data (not the test data at this point), modify it again, and
repeat, until the model is as good as it can get. Here are some things you should try:

Try different architectures; add or remove layers.

Add dropout.

If your model is small, add L1 or L2 regularization.

Try different hyperparameters (such as the number of units per layer or the
learning rate of the optimizer) to find the optimal configuration.

Optionally, iterate on data curation or feature engineering: collect and anno-
tate more data, develop better features, or remove features that don’t seem to
be informative.

It’s possible to automate a large chunk of this work by using automated hyperparameter
tuning software, such as KerasTuner. We’ll cover this in chapter 13.

Be mindful of the following: Every time you use feedback from your validation pro-
cess to tune your model, you leak information about the validation process into the
model. Repeated just a few times, this is innocuous; done systematically over many
iterations, it will eventually cause your model to overfit to the validation process (even
though no model is directly trained on any of the validation data). This makes the
evaluation process less reliable.

Once you’ve developed a satisfactory model configuration, you can train your
final production model on all the available data (training and validation) and evalu-
ate it one last time on the test set. If it turns out that performance on the test set is
significantly worse than the performance measured on the validation data, this may
mean either that your validation procedure wasn’t reliable after all, or that you
began overfitting to the validation data while tuning the parameters of the model.
In this case, you may want to switch to a more reliable evaluation protocol (such as
iterated K-fold validation).

Deploy the model

Your model has successfully cleared its final evaluation on the test set—it’s ready to be
deployed and to begin its productive life.

Explain your work to stakeholders and set expectations

Success and customer trust are about consistently meeting or exceeding people’s
expectations. The actual system you deliver is only half of that picture; the other half
is setting appropriate expectations before launch.

The expectations of non-specialists towards Al systems are often unrealistic. For
example, they might expect that the system “understands” its task and is capable of

166

6.3.2

CHAPTER 6 The universal workflow of machine learning

exercising human-like common sense in the context of the task. To address this, you
should consider showing some examples of the failure modes of your model (for
instance, show what incorrectly classified samples look like, especially those for which
the misclassification seems surprising).

They might also expect human-level performance, especially for processes that were
previously handled by people. Most machine learning models, because they are (imper-
fectly) trained to approximate human-generated labels, do not nearly get there. You
should clearly convey model performance expectations. Avoid using abstract statements
like “The model has 98% accuracy” (which most people mentally round up to 100%),
and prefer talking, for instance, about false negative rates and false positive rates. You
could say, “With these settings, the fraud detection model would have a 5% false nega-
tive rate and a 2.5% false positive rate. Every day, an average of 200 valid transactions
would be flagged as fraudulent and sent for manual review, and an average of 14 fraudu-
lent transactions would be missed. An average of 266 fraudulent transactions would be
correctly caught.” Clearly relate the model’s performance metrics to business goals.

You should also make sure to discuss with stakeholders the choice of key launch
parameters—for instance, the probability threshold at which a transaction should be
flagged (different thresholds will produce different false negative and false positive
rates). Such decisions involve trade-offs that can only be handled with a deep under-
standing of the business context.

Ship an inference model

A machine learning project doesn’t end when you arrive at a Colab notebook that can
save a trained model. You rarely put in production the exact same Python model
object that you manipulated during training.

First, you may want to export your model to something other than Python:

Your production environment may not support Python at all—for instance, if
it’s a mobile app or an embedded system.

If the rest of the app isn’t in Python (it could be in JavaScript, C++, etc.), the use
of Python to serve a model may induce significant overhead.

Second, since your production model will only be used to output predictions (a phase
called inference), rather than for training, you have room to perform various optimiza-
tions that can make the model faster and reduce its memory footprint.

Let’s take a quick look at the different model deployment options you have available.

DEPLOYING A MODEL As A REST API

This is perhaps the common way to turn a model into a product: install TensorFlow on
a server or cloud instance, and query the model’s predictions via a REST API. You
could build your own serving app using something like Flask (or any other Python
web development library), or use TensorFlow’s own library for shipping models as
APIs, called TensorFlow Serving (www.tensorflow.org/tfx/guide/serving). With Tensor-
Flow Serving, you can deploy a Keras model in minutes.

http://www.tensorflow.org/tfx/guide/serving

Deploy the model 167

You should use this deployment setup when

The application that will consume the model’s prediction will have reliable
access to the internet (obviously). For instance, if your application is a mobile
app, serving predictions from a remote API means that the application won’t be
usable in airplane mode or in a low-connectivity environment.

The application does not have strict latency requirements: the request, infer-
ence, and answer round trip will typically take around 500 ms.

The input data sent for inference is not highly sensitive: the data will need to
be available on the server in a decrypted form, since it will need to be seen by
the model (but note that you should use SSL encryption for the HTTP request
and answer).

For instance, the image search engine project, the music recommender system, the
credit card fraud detection project, and the satellite imagery project are all good fits
for serving via a REST APIL.

An important question when deploying a model as a REST API is whether you
want to host the code on your own, or whether you want to use a fully managed third-
party cloud service. For instance, Cloud Al Platform, a Google product, lets you simply
upload your TensorFlow model to Google Cloud Storage (GCS), and it gives you an
API endpoint to query it. It takes care of many practical details such as batching pre-
dictions, load balancing, and scaling.

DEPLOYING A MODEL ON A DEVICE
Sometimes, you may need your model to live on the same device that runs the applica-
tion that uses it—maybe a smartphone, an embedded ARM CPU on a robot, or a
microcontroller on a tiny device. You may have seen a camera capable of automati-
cally detecting people and faces in the scenes you pointed it at: that was probably a
small deep learning model running directly on the camera.

You should use this setup when

Your model has strict latency constraints or needs to run in a low-connectivity
environment. If you’re building an immersive augmented reality application,
querying a remote server is not a viable option.

Your model can be made sufficiently small that it can run under the memory and
power constraints of the target device. You can use the TensorFlow Model Opti-
mization Toolkit to help with this (www.tensorflow.org/model_optimization).
Getting the highest possible accuracy isn’t mission critical for your task. There
is always a trade-off between runtime efficiency and accuracy, so memory and
power constraints often require you to ship a model that isn’t quite as good as
the best model you could run on a large GPU.

The input data is strictly sensitive and thus shouldn’t be decryptable on a
remote server.

http://www.tensorflow.org/model_optimization

168

CHAPTER 6 The universal workflow of machine learning

Our spam detection model will need to run on the end user’s smartphone as part of
the chat app, because messages are end-to-end encrypted and thus cannot be read by
a remotely hosted model. Likewise, the bad-cookie detection model has strict latency
constraints and will need to run at the factory. Thankfully, in this case, we don’t have
any power or space constraints, so we can actually run the model on a GPU.

To deploy a Keras model on a smartphone or embedded device, your go-to solution
is TensorFlow Lite (www.tensorflow.org/lite). It’s a framework for efficient on-device
deep learning inference that runs on Android and iOS smartphones, as well as ARM64-
based computers, Raspberry Pi, or certain microcontrollers. It includes a converter that
can straightforwardly turn your Keras model into the TensorFlow Lite format.

DEPLOYING A MODEL IN THE BROWSER
Deep learning is often used in browser-based or desktop-based JavaScript applications.
While it is usually possible to have the application query a remote model via a REST
API, there can be key advantages in having the model run directly in the browser, on
the user’s computer (utilizing GPU resources if they’re available).

Use this setup when

You want to offload compute to the end user, which can dramatically reduce
Server costs.

The input data needs to stay on the end user’s computer or phone. For
instance, in our spam detection project, the web version and the desktop ver-
sion of the chat app (implemented as a cross-platform app written in Java-
Script) should use a locally run model.

Your application has strict latency constraints. While a model running on the end
user’s laptop or smartphone is likely to be slower than one running on a large
GPU on your own server, you don’t have the extra 100 ms of network round trip.
You need your app to keep working without connectivity, after the model has
been downloaded and cached.

You should only go with this option if your model is small enough that it won’t hog the
CPU, GPU, or RAM of your user’s laptop or smartphone. In addition, since the entire
model will be downloaded to the user’s device, you should make sure that nothing
about the model needs to stay confidential. Be mindful of the fact that, given a trained
deep learning model, it is usually possible to recover some information about the train-
ing data: better not to make your trained model public if it was trained on sensitive data.

To deploy a model in JavaScript, the TensorFlow ecosystem includes TensorFlow.js
(www.tensorflow.org/js), a JavaScript library for deep learning that implements
almost all of the Keras API (originally developed under the working name WebKeras)
as well as many lower-level TensorFlow APIs. You can easily import a saved Keras
model into TensorFlow.js to query it as part of your browser-based JavaScript app or
your desktop Electron app.

www.tensorflow.org/lite
http://www.tensorflow.org/js

6.3.3

Deploy the model 169

INFERENCE MODEL OPTIMIZATION
Optimizing your model for inference is especially important when deploying in an
environment with strict constraints on available power and memory (smartphones
and embedded devices) or for applications with low latency requirements. You should
always seek to optimize your model before importing into TensorFlow.js or exporting
it to TensorFlow Lite.

There are two popular optimization techniques you can apply:

Weight pruning—Not every coefficient in a weight tensor contributes equally to
the predictions. It’s possible to considerably lower the number of parameters
in the layers of your model by only keeping the most significant ones. This
reduces the memory and compute footprint of your model, at a small cost in
performance metrics. By deciding how much pruning you want to apply, you
are in control of the trade-off between size and accuracy.

Weight quantization—Deep learning models are trained with single-precision
floating-point (£loat32) weights. However, it’s possible to quantize weights to
8-bit signed integers (int8) to get an inference-only model that’s a quarter the
size but remains near the accuracy of the original model.

The TensorFlow ecosystem includes a weight pruning and quantization toolkit (www
.tensorflow.org/model_optimization) that is deeply integrated with the Keras API.

Monitor your model in the wild

You’ve exported an inference model, you’ve integrated it into your application, and
you’ve done a dry run on production data—the model behaved exactly as you expected.
You’ve written unit tests as well as logging and status-monitoring code—perfect. Now it’s
time to press the big red button and deploy to production.

Even this is not the end. Once you’ve deployed a model, you need to keep moni-
toring its behavior, its performance on new data, its interaction with the rest of the
application, and its eventual impact on business metrics.

Is user engagement in your online radio up or down after deploying the new
music recommender system? Has the average ad click-through rate increased
after switching to the new click-through-rate prediction model? Consider using
randomized A/B testing to isolate the impact of the model itself from other
changes: a subset of cases should go through the new model, while another
control subset should stick to the old process. Once sufficiently many cases have
been processed, the difference in outcomes between the two is likely attribut-
able to the model.

If possible, do a regular manual audit of the model’s predictions on production
data. It’s generally possible to reuse the same infrastructure as for data annotation:
send some fraction of the production data to be manually annotated, and com-
pare the model’s predictions to the new annotations. For instance, you should
definitely do this for the image search engine and the bad-cookie flagging system.

http://www.tensorflow.org/model_optimization
http://www.tensorflow.org/model_optimization
http://www.tensorflow.org/model_optimization

170

6.3.4

CHAPTER 6 The universal workflow of machine learning

When manual audits are impossible, consider alternative evaluation avenues
such as user surveys (for example, in the case of the spam and offensive-content
flagging system).

Maintain your model

Lastly, no model lasts forever. You’ve already learned about concept drift: over time, the
characteristics of your production data will change, gradually degrading the perfor-
mance and relevance of your model. The lifespan of your music recommender system
will be counted in weeks. For the credit card fraud detection systems, it will be days. A
couple of years in the best case for the image search engine.

As soon as your model has launched, you should be getting ready to train the next
generation that will replace it. As such,

Watch out for changes in the production data. Are new features becoming avail-
able? Should you expand or otherwise edit the label set?

Keep collecting and annotating data, and keep improving your annotation
pipeline over time. In particular, you should pay special attention to collecting
samples that seem to be difficult for your current model to classify—such sam-
ples are the most likely to help improve performance.

This concludes the universal workflow of machine learning—that’s a lot of things to
keep in mind. It takes time and experience to become an expert, but don’t worry,
you're already a lot wiser than you were a few chapters ago. You are now familiar with
the big picture—the entire spectrum of what machine learning projects entail. While
most of this book will focus on model development, you're now aware that it’s only
one part of the entire workflow. Always keep in mind the big picture!

Summary

When you take on a new machine learning project, first define the problem at

hand:

— Understand the broader context of what you’re setting out to do—what’s the
end goal and what are the constraints?

— Collect and annotate a dataset; make sure you understand your data in depth.

— Choose how you’ll measure success for your problem—what metrics will you
monitor on your validation data?

Once you understand the problem and you have an appropriate dataset, develop

a model:

— Prepare your data.

— Pick your evaluation protocol: holdout validation? K-fold validation? Which
portion of the data should you use for validation?

Achieve statistical power: beat a simple baseline.

Scale up: develop a model that can overfit.

Summary 171

— Regularize your model and tune its hyperparameters, based on performance

on the validation data. A lot of machine learning research tends to focus only
on this step, but keep the big picture in mind.

When your model is ready and yields good performance on the test data, it’s
time for deployment:

First, make sure you set appropriate expectations with stakeholders.
Optimize a final model for inference, and ship a model to the deployment
environment of choice—web server, mobile, browser, embedded device, etc.
Monitor your model’s performance in production, and keep collecting data
so you can develop the next generation of the model.

