
172

Working with Keras:
A deep dive

You’ve now got some experience with Keras—you’re familiar with the Sequential
model, Dense layers, and built-in APIs for training, evaluation, and inference—
compile(), fit(), evaluate(), and predict(). You even learned in chapter 3 how
to inherit from the Layer class to create custom layers, and how to use the Tensor-
Flow GradientTape to implement a step-by-step training loop.

 In the coming chapters, we’ll dig into computer vision, timeseries forecast-
ing, natural language processing, and generative deep learning. These complex
applications will require much more than a Sequential architecture and the
default fit() loop. So let’s first turn you into a Keras expert! In this chapter,
you’ll get a complete overview of the key ways to work with Keras APIs: everything

This chapter covers
 Creating Keras models with the Sequential

class, the Functional API, and model subclassing

 Using built-in Keras training and evaluation loops

 Using Keras callbacks to customize training

 Using TensorBoard to monitor training and
evaluation metrics

 Writing training and evaluation loops from scratch

173Different ways to build Keras models

you’re going to need to handle the advanced deep learning use cases you’ll encoun-
ter next.

7.1 A spectrum of workflows
The design of the Keras API is guided by the principle of progressive disclosure of complex-
ity: make it easy to get started, yet make it possible to handle high-complexity use
cases, only requiring incremental learning at each step. Simple use cases should be
easy and approachable, and arbitrarily advanced workflows should be possible: no mat-
ter how niche and complex the thing you want to do, there should be a clear path to
it. A path that builds upon the various things you’ve learned from simpler workflows.
This means that you can grow from beginner to expert and still use the same tools—
only in different ways.

 As such, there’s not a single “true” way of using Keras. Rather, Keras offers a spec-
trum of workflows, from the very simple to the very flexible. There are different ways to
build Keras models, and different ways to train them, answering different needs.
Because all these workflows are based on shared APIs, such as Layer and Model, com-
ponents from any workflow can be used in any other workflow—they can all talk to
each other.

7.2 Different ways to build Keras models
There are three APIs for building models in Keras (see figure 7.1):

 The Sequential model, the most approachable API—it’s basically a Python list. As
such, it’s limited to simple stacks of layers.

 The Functional API, which focuses on graph-like model architectures. It rep-
resents a nice mid-point between usability and flexibility, and as such, it’s the
most commonly used model-building API.

 Model subclassing, a low-level option where you write everything yourself from
scratch. This is ideal if you want full control over every little thing. However, you
won’t get access to many built-in Keras features, and you will be more at risk of
making mistakes.

Sequential API

+ built-in layers

Functional API

+ built-in layers

Functional API

+ custom layers

+ custom metrics

+ custom losses

+ ...

Subclassing:

write everything

yourself from scratch

Novice users,

simple models

Engineers with

standard use

cases

Engineers with

niche use cases

requiring bespoke

solutions

Researchers

Figure 7.1 Progressive disclosure of complexity for model building

174 CHAPTER 7 Working with Keras: A deep dive

7.2.1 The Sequential model

The simplest way to build a Keras model is to use the Sequential model, which you
already know about.

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
 layers.Dense(64, activation="relu"),
 layers.Dense(10, activation="softmax")
])

Note that it’s possible to build the same model incrementally via the add() method,
which is similar to the append() method of a Python list.

model = keras.Sequential()
model.add(layers.Dense(64, activation="relu"))
model.add(layers.Dense(10, activation="softmax"))

You saw in chapter 4 that layers only get built (which is to say, create their weights) when
they are called for the first time. That’s because the shape of the layers' weights depends
on the shape of their input: until the input shape is known, they can’t be created.

 As such, the preceding Sequential model does not have any weights (listing 7.3)
until you actually call it on some data, or call its build() method with an input shape
(listing 7.4).

>>> model.weights
ValueError: Weights for model sequential_1 have not yet been created.

>>> model.build(input_shape=(None, 3))
>>> model.weights
[<tf.Variable "dense_2/kernel:0" shape=(3, 64) dtype=float32, ... >,
 <tf.Variable "dense_2/bias:0" shape=(64,) dtype=float32, ... >
 <tf.Variable "dense_3/kernel:0" shape=(64, 10) dtype=float32, ... >,
 <tf.Variable "dense_3/bias:0" shape=(10,) dtype=float32, ... >]

After the model is built, you can display its contents via the summary() method, which
comes in handy for debugging.

Listing 7.1 The Sequential class

Listing 7.2 Incrementally building a Sequential model

Listing 7.3 Models that aren’t yet built have no weights

Listing 7.4 Calling a model for the first time to build it

At that point, the
model isn’t built yet.

Builds the model—now the model will expect samples of shape (3,). The
None in the input shape signals that the batch size could be anything.

Now you can retrieve
the model’s weights.

175Different ways to build Keras models

>>> model.summary()
Model: "sequential_1"

Layer (type) Output Shape Param #
===
dense_2 (Dense) (None, 64) 256

dense_3 (Dense) (None, 10) 650
===
Total params: 906
Trainable params: 906
Non-trainable params: 0

As you can see, this model happens to be named “sequential_1.” You can give names
to everything in Keras—every model, every layer.

>>> model = keras.Sequential(name="my_example_model")
>>> model.add(layers.Dense(64, activation="relu", name="my_first_layer"))
>>> model.add(layers.Dense(10, activation="softmax", name="my_last_layer"))
>>> model.build((None, 3))
>>> model.summary()
Model: "my_example_model"

Layer (type) Output Shape Param #
===
my_first_layer (Dense) (None, 64) 256

my_last_layer (Dense) (None, 10) 650
===
Total params: 906
Trainable params: 906
Non-trainable params: 0

When building a Sequential model incrementally, it’s useful to be able to print a sum-
mary of what the current model looks like after you add each layer. But you can’t print
a summary until the model is built! There’s actually a way to have your Sequential
built on the fly: just declare the shape of the model’s inputs in advance. You can do
this via the Input class.

model = keras.Sequential()
model.add(keras.Input(shape=(3,)))
model.add(layers.Dense(64, activation="relu"))

Listing 7.5 The summary() method

Listing 7.6 Naming models and layers with the name argument

Listing 7.7 Specifying the input shape of your model in advance

Use Input to declare the shape
of the inputs. Note that the
shape argument must be the
shape of each sample, not
the shape of one batch.

176 CHAPTER 7 Working with Keras: A deep dive

Now you can use summary() to follow how the output shape of your model changes as
you add more layers:

>>> model.summary()
Model: "sequential_2"

Layer (type) Output Shape Param #
===
dense_4 (Dense) (None, 64) 256
===
Total params: 256
Trainable params: 256
Non-trainable params: 0

>>> model.add(layers.Dense(10, activation="softmax"))
>>> model.summary()
Model: "sequential_2"

Layer (type) Output Shape Param #
===
dense_4 (Dense) (None, 64) 256

dense_5 (Dense) (None, 10) 650
===
Total params: 906
Trainable params: 906
Non-trainable params: 0

This is a pretty common debugging workflow when dealing with layers that transform
their inputs in complex ways, such as the convolutional layers you’ll learn about in
chapter 8.

7.2.2 The Functional API

The Sequential model is easy to use, but its applicability is extremely limited: it can
only express models with a single input and a single output, applying one layer after
the other in a sequential fashion. In practice, it’s pretty common to encounter models
with multiple inputs (say, an image and its metadata), multiple outputs (different
things you want to predict about the data), or a nonlinear topology.

 In such cases, you’d build your model using the Functional API. This is what most
Keras models you’ll encounter in the wild use. It’s fun and powerful—it feels like play-
ing with LEGO bricks.

A SIMPLE EXAMPLE

Let’s start with something simple: the stack of two layers we used in the previous sec-
tion. Its Functional API version looks like the following listing.

177Different ways to build Keras models

inputs = keras.Input(shape=(3,), name="my_input")
features = layers.Dense(64, activation="relu")(inputs)
outputs = layers.Dense(10, activation="softmax")(features)
model = keras.Model(inputs=inputs, outputs=outputs)

Let’s go over this step by step.
 We started by declaring an Input (note that you can also give names to these input

objects, like everything else):

inputs = keras.Input(shape=(3,), name="my_input")

This inputs object holds information about the shape and dtype of the data that the
model will process:

>>> inputs.shape
(None, 3)
>>> inputs.dtype
float32

We call such an object a symbolic tensor. It doesn’t contain any actual data, but it
encodes the specifications of the actual tensors of data that the model will see when
you use it. It stands for future tensors of data.

 Next, we created a layer and called it on the input:

features = layers.Dense(64, activation="relu")(inputs)

All Keras layers can be called both on real tensors of data and on these symbolic ten-
sors. In the latter case, they return a new symbolic tensor, with updated shape and
dtype information:

>>> features.shape
(None, 64)

After obtaining the final outputs, we instantiated the model by specifying its inputs
and outputs in the Model constructor:

outputs = layers.Dense(10, activation="softmax")(features)
model = keras.Model(inputs=inputs, outputs=outputs)

Here’s the summary of our model:

>>> model.summary()
Model: "functional_1"

Layer (type) Output Shape Param #
===
my_input (InputLayer) [(None, 3)] 0

Listing 7.8 A simple Functional model with two Dense layers

The model will process batches where each sample
has shape (3,). The number of samples per batch is
variable (indicated by the None batch size).

These batches will have
dtype float32.

178 CHAPTER 7 Working with Keras: A deep dive

dense_6 (Dense) (None, 64) 256

dense_7 (Dense) (None, 10) 650
===
Total params: 906
Trainable params: 906
Non-trainable params: 0

MULTI-INPUT, MULTI-OUTPUT MODELS

Unlike this toy model, most deep learning models don’t look like lists—they look like
graphs. They may, for instance, have multiple inputs or multiple outputs. It’s for this
kind of model that the Functional API really shines.

 Let’s say you’re building a system to rank customer support tickets by priority and
route them to the appropriate department. Your model has three inputs:

 The title of the ticket (text input)
 The text body of the ticket (text input)
 Any tags added by the user (categorical input, assumed here to be one-hot

encoded)

We can encode the text inputs as arrays of ones and zeros of size vocabulary_size
(see chapter 11 for detailed information about text encoding techniques).

 Your model also has two outputs:

 The priority score of the ticket, a scalar between 0 and 1 (sigmoid output)
 The department that should handle the ticket (a softmax over the set of depart-

ments)

You can build this model in a few lines with the Functional API.

vocabulary_size = 10000
num_tags = 100
num_departments = 4

title = keras.Input(shape=(vocabulary_size,), name="title")
text_body = keras.Input(shape=(vocabulary_size,), name="text_body")
tags = keras.Input(shape=(num_tags,), name="tags")

features = layers.Concatenate()([title, text_body, tags])
features = layers.Dense(64, activation="relu")(features)

priority = layers.Dense(1, activation="sigmoid", name="priority")(features)
department = layers.Dense(
 num_departments, activation="softmax", name="department")(features)

model = keras.Model(inputs=[title, text_body, tags],
 outputs=[priority, department])

Listing 7.9 A multi-input, multi-output Functional model

Define
model

inputs.

Combine input features into
a single tensor, features, by

concatenating them.

Apply an intermediate
layer to recombine input

features into richer
representations.

Define
model

outputs.

Create the model by specifying its inputs and outputs.

179Different ways to build Keras models

The Functional API is a simple, LEGO-like, yet very flexible way to define arbitrary
graphs of layers like these.

TRAINING A MULTI-INPUT, MULTI-OUTPUT MODEL

You can train your model in much the same way as you would train a Sequential
model, by calling fit() with lists of input and output data. These lists of data should
be in the same order as the inputs you passed to the Model constructor.

import numpy as np

num_samples = 1280

title_data = np.random.randint(0, 2, size=(num_samples, vocabulary_size))
text_body_data = np.random.randint(0, 2, size=(num_samples, vocabulary_size))
tags_data = np.random.randint(0, 2, size=(num_samples, num_tags))

priority_data = np.random.random(size=(num_samples, 1))
department_data = np.random.randint(0, 2, size=(num_samples, num_departments))

model.compile(optimizer="rmsprop",
 loss=["mean_squared_error", "categorical_crossentropy"],
 metrics=[["mean_absolute_error"], ["accuracy"]])
model.fit([title_data, text_body_data, tags_data],
 [priority_data, department_data],
 epochs=1)
model.evaluate([title_data, text_body_data, tags_data],
 [priority_data, department_data])
priority_preds, department_preds = model.predict(
 [title_data, text_body_data, tags_data])

If you don’t want to rely on input order (for instance, because you have many inputs
or outputs), you can also leverage the names you gave to the Input objects and the
output layers, and pass data via dictionaries.

model.compile(optimizer="rmsprop",
 loss={"priority": "mean_squared_error", "department":
 "categorical_crossentropy"},
 metrics={"priority": ["mean_absolute_error"], "department":
 ["accuracy"]})
model.fit({"title": title_data, "text_body": text_body_data,
 "tags": tags_data},
 {"priority": priority_data, "department": department_data},
 epochs=1)
model.evaluate({"title": title_data, "text_body": text_body_data,
 "tags": tags_data},
 {"priority": priority_data, "department": department_data})
priority_preds, department_preds = model.predict(
 {"title": title_data, "text_body": text_body_data, "tags": tags_data})

Listing 7.10 Training a model by providing lists of input and target arrays

Listing 7.11 Training a model by providing dicts of input and target arrays

Dummy
input
data

Dummy
target data

180 CHAPTER 7 Working with Keras: A deep dive

THE POWER OF THE FUNCTIONAL API: ACCESS TO LAYER CONNECTIVITY

A Functional model is an explicit graph data structure. This makes it possible to
inspect how layers are connected and reuse previous graph nodes (which are layer
outputs) as part of new models. It also nicely fits the “mental model” that most research-
ers use when thinking about a deep neural network: a graph of layers. This enables
two important use cases: model visualization and feature extraction.

 Let’s visualize the connectivity of the model we just defined (the topology of the
model). You can plot a Functional model as a graph with the plot_model() utility (see
figure 7.2).

keras.utils.plot_model(model, "ticket_classifier.png")

You can add to this plot the input and output shapes of each layer in the model, which
can be helpful during debugging (see figure 7.3).

keras.utils.plot_model(
 model, "ticket_classifier_with_shape_info.png", show_shapes=True)

Figure 7.2 Plot generated by
plot_model() on our ticket
classifier model

Figure 7.3 Model plot with shape information added

181Different ways to build Keras models

The “None” in the tensor shapes represents the batch size: this model allows batches
of any size.

 Access to layer connectivity also means that you can inspect and reuse individual
nodes (layer calls) in the graph. The model.layers model property provides the list
of layers that make up the model, and for each layer you can query layer.input and
layer.output.

>>> model.layers
[<tensorflow.python.keras.engine.input_layer.InputLayer at 0x7fa963f9d358>,
 <tensorflow.python.keras.engine.input_layer.InputLayer at 0x7fa963f9d2e8>,
 <tensorflow.python.keras.engine.input_layer.InputLayer at 0x7fa963f9d470>,
 <tensorflow.python.keras.layers.merge.Concatenate at 0x7fa963f9d860>,
 <tensorflow.python.keras.layers.core.Dense at 0x7fa964074390>,
 <tensorflow.python.keras.layers.core.Dense at 0x7fa963f9d898>,
 <tensorflow.python.keras.layers.core.Dense at 0x7fa963f95470>]
>>> model.layers[3].input
[<tf.Tensor "title:0" shape=(None, 10000) dtype=float32>,
 <tf.Tensor "text_body:0" shape=(None, 10000) dtype=float32>,
 <tf.Tensor "tags:0" shape=(None, 100) dtype=float32>]
>>> model.layers[3].output
<tf.Tensor "concatenate/concat:0" shape=(None, 20100) dtype=float32>

This enables you to do feature extraction, creating models that reuse intermediate fea-
tures from another model.

 Let’s say you want to add another output to the previous model—you want to esti-
mate how long a given issue ticket will take to resolve, a kind of difficulty rating. You
could do this via a classification layer over three categories: “quick,” “medium,” and
“difficult.” You don’t need to recreate and retrain a model from scratch. You can start
from the intermediate features of your previous model, since you have access to them,
like this.

features = model.layers[4].output
difficulty = layers.Dense(3, activation="softmax", name="difficulty")(features)

new_model = keras.Model(
 inputs=[title, text_body, tags],
 outputs=[priority, department, difficulty])

Let’s plot our new model (see figure 7.4):

keras.utils.plot_model(
 new_model, "updated_ticket_classifier.png", show_shapes=True)

Listing 7.12 Retrieving the inputs or outputs of a layer in a Functional model

Listing 7.13 Creating a new model by reusing intermediate layer outputs

layers[4] is our intermediate
Dense layer

182 CHAPTER 7 Working with Keras: A deep dive

7.2.3 Subclassing the Model class

The last model-building pattern you should know about is the most advanced one:
Model subclassing. You learned in chapter 3 how to subclass the Layer class to create
custom layers. Subclassing Model is pretty similar:

 In the __init__() method, define the layers the model will use.
 In the call() method, define the forward pass of the model, reusing the layers

previously created.
 Instantiate your subclass, and call it on data to create its weights.

REWRITING OUR PREVIOUS EXAMPLE AS A SUBCLASSED MODEL

Let’s take a look at a simple example: we will reimplement the customer support ticket
management model using a Model subclass.

class CustomerTicketModel(keras.Model):

 def __init__(self, num_departments):
 super().__init__()
 self.concat_layer = layers.Concatenate()
 self.mixing_layer = layers.Dense(64, activation="relu")
 self.priority_scorer = layers.Dense(1, activation="sigmoid")
 self.department_classifier = layers.Dense(
 num_departments, activation="softmax")

 def call(self, inputs):
 title = inputs["title"]
 text_body = inputs["text_body"]
 tags = inputs["tags"]

 features = self.concat_layer([title, text_body, tags])
 features = self.mixing_layer(features)

Listing 7.14 A simple subclassed model

Figure 7.4 Plot of our new model

Don’t forget to
call the super()
constructor!

Define
sublayers
in the
constructor.

Define the forward
pass in the call()
method.

183Different ways to build Keras models

 priority = self.priority_scorer(features)
 department = self.department_classifier(features)
 return priority, department

Once you’ve defined the model, you can instantiate it. Note that it will only create its
weights the first time you call it on some data, much like Layer subclasses:

model = CustomerTicketModel(num_departments=4)

priority, department = model(
 {"title": title_data, "text_body": text_body_data, "tags": tags_data})

So far, everything looks very similar to Layer subclassing, a workflow you encountered
in chapter 3. What, then, is the difference between a Layer subclass and a Model sub-
class? It’s simple: a “layer” is a building block you use to create models, and a “model”
is the top-level object that you will actually train, export for inference, etc. In short, a
Model has fit(), evaluate(), and predict() methods. Layers don’t. Other than that,
the two classes are virtually identical. (Another difference is that you can save a model
to a file on disk, which we will cover in a few sections.)

 You can compile and train a Model subclass just like a Sequential or Functional
model:

model.compile(optimizer="rmsprop",
 loss=["mean_squared_error", "categorical_crossentropy"],
 metrics=[["mean_absolute_error"], ["accuracy"]])
model.fit({"title": title_data,
 "text_body": text_body_data,
 "tags": tags_data},
 [priority_data, department_data],
 epochs=1)
model.evaluate({"title": title_data,
 "text_body": text_body_data,
 "tags": tags_data},
 [priority_data, department_data])
priority_preds, department_preds = model.predict({"title": title_data,
 "text_body": text_body_data,
 "tags": tags_data})

The Model subclassing workflow is the most flexible way to build a model. It enables
you to build models that cannot be expressed as directed acyclic graphs of layers—
imagine, for instance, a model where the call() method uses layers inside a for loop,
or even calls them recursively. Anything is possible—you’re in charge.

BEWARE: WHAT SUBCLASSED MODELS DON’T SUPPORT

This freedom comes at a cost: with subclassed models, you are responsible for more of
the model logic, which means your potential error surface is much larger. As a result,
you will have more debugging work to do. You are developing a new Python object,
not just snapping together LEGO bricks.

The structure of what you pass as the loss and
metrics arguments must match exactly what gets

returned by call()—here, a list of two elements.

The structure of the input data must match
exactly what is expected by the call() method—
here, a dict with keys title, text_body, and tags.

The structure of the target
data must match exactly what is
returned by the call() method—
here, a list of two elements.

184 CHAPTER 7 Working with Keras: A deep dive

 Functional and subclassed models are also substantially different in nature. A Func-
tional model is an explicit data structure—a graph of layers, which you can view, inspect,
and modify. A subclassed model is a piece of bytecode—a Python class with a call()
method that contains raw code. This is the source of the subclassing workflow’s flexibil-
ity—you can code up whatever functionality you like—but it introduces new limitations.

 For instance, because the way layers are connected to each other is hidden inside
the body of the call() method, you cannot access that information. Calling sum-
mary() will not display layer connectivity, and you cannot plot the model topology via
plot_model(). Likewise, if you have a subclassed model, you cannot access the nodes
of the graph of layers to do feature extraction because there is simply no graph. Once
the model is instantiated, its forward pass becomes a complete black box.

7.2.4 Mixing and matching different components

Crucially, choosing one of these patterns—the Sequential model, the Functional API,
or Model subclassing—does not lock you out of the others. All models in the Keras API
can smoothly interoperate with each other, whether they’re Sequential models, Func-
tional models, or subclassed models written from scratch. They’re all part of the same
spectrum of workflows.

 For instance, you can use a subclassed layer or model in a Functional model.

class Classifier(keras.Model):

 def __init__(self, num_classes=2):
 super().__init__()
 if num_classes == 2:
 num_units = 1
 activation = "sigmoid"
 else:
 num_units = num_classes
 activation = "softmax"
 self.dense = layers.Dense(num_units, activation=activation)

 def call(self, inputs):
 return self.dense(inputs)

inputs = keras.Input(shape=(3,))
features = layers.Dense(64, activation="relu")(inputs)
outputs = Classifier(num_classes=10)(features)
model = keras.Model(inputs=inputs, outputs=outputs)

Inversely, you can use a Functional model as part of a subclassed layer or model.

inputs = keras.Input(shape=(64,))
outputs = layers.Dense(1, activation="sigmoid")(inputs)
binary_classifier = keras.Model(inputs=inputs, outputs=outputs)

Listing 7.15 Creating a Functional model that includes a subclassed model

Listing 7.16 Creating a subclassed model that includes a Functional model

185Using built-in training and evaluation loops

class MyModel(keras.Model):

 def __init__(self, num_classes=2):
 super().__init__()
 self.dense = layers.Dense(64, activation="relu")
 self.classifier = binary_classifier

 def call(self, inputs):
 features = self.dense(inputs)
 return self.classifier(features)

model = MyModel()

7.2.5 Remember: Use the right tool for the job

You’ve learned about the spectrum of workflows for building Keras models, from the
simplest workflow, the Sequential model, to the most advanced one, model subclass-
ing. When should you use one over the other? Each one has its pros and cons—pick
the one most suitable for the job at hand.

 In general, the Functional API provides you with a pretty good trade-off between
ease of use and flexibility. It also gives you direct access to layer connectivity, which is
very powerful for use cases such as model plotting or feature extraction. If you can use
the Functional API—that is, if your model can be expressed as a directed acyclic graph
of layers—I recommend using it over model subclassing.

 Going forward, all examples in this book will use the Functional API, simply
because all the models we will work with are expressible as graphs of layers. We will,
however, make frequent use of subclassed layers. In general, using Functional models
that include subclassed layers provides the best of both worlds: high development flex-
ibility while retaining the advantages of the Functional API.

7.3 Using built-in training and evaluation loops
The principle of progressive disclosure of complexity—access to a spectrum of work-
flows that go from dead easy to arbitrarily flexible, one step at a time—also applies to
model training. Keras provides you with different workflows for training models. They
can be as simple as calling fit() on your data, or as advanced as writing a new train-
ing algorithm from scratch.

 You are already familiar with the compile(), fit(), evaluate(), predict() work-
flow. As a reminder, take a look at the following listing.

from tensorflow.keras.datasets import mnist

def get_mnist_model():
 inputs = keras.Input(shape=(28 * 28,))
 features = layers.Dense(512, activation="relu")(inputs)
 features = layers.Dropout(0.5)(features)
 outputs = layers.Dense(10, activation="softmax")(features)

Listing 7.17 The standard workflow: compile(), fit(), evaluate(), predict()

Create a model (we factor this
into a separate function so as
to reuse it later).

186 CHAPTER 7 Working with Keras: A deep dive

 model = keras.Model(inputs, outputs)
 return model

(images, labels), (test_images, test_labels) = mnist.load_data()
images = images.reshape((60000, 28 * 28)).astype("float32") / 255
test_images = test_images.reshape((10000, 28 * 28)).astype("float32") / 255
train_images, val_images = images[10000:], images[:10000]
train_labels, val_labels = labels[10000:], labels[:10000]

model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=3,
 validation_data=(val_images, val_labels))
test_metrics = model.evaluate(test_images, test_labels)
predictions = model.predict(test_images)

There are a couple of ways you can customize this simple workflow:

 Provide your own custom metrics.
 Pass callbacks to the fit() method to schedule actions to be taken at specific

points during training.

Let’s take a look at these.

7.3.1 Writing your own metrics

Metrics are key to measuring the performance of your model—in particular, to mea-
suring the difference between its performance on the training data and its perfor-
mance on the test data. Commonly used metrics for classification and regression are
already part of the built-in keras.metrics module, and most of the time that’s what
you will use. But if you’re doing anything out of the ordinary, you will need to be able
to write your own metrics. It’s simple!

 A Keras metric is a subclass of the keras.metrics.Metric class. Like layers, a met-
ric has an internal state stored in TensorFlow variables. Unlike layers, these variables
aren’t updated via backpropagation, so you have to write the state-update logic your-
self, which happens in the update_state() method.

 For example, here’s a simple custom metric that measures the root mean squared
error (RMSE).

import tensorflow as tf

class RootMeanSquaredError(keras.metrics.Metric):

Listing 7.18 Implementing a custom metric by subclassing the Metric class

Load your data, reserving
some for validation.

Compile the model by
specifying its optimizer, the
loss function to minimize,
and the metrics to monitor.

Use fit() to train the
model, optionally
providing validation data
to monitor performance
on unseen data.

Use evaluate() to
compute the loss and
metrics on new data.

Use predict() to compute
classification probabilities

on new data.

Subclass the
Metric class.

187Using built-in training and evaluation loops

 def __init__(self, name="rmse", **kwargs):
 super().__init__(name=name, **kwargs)
 self.mse_sum = self.add_weight(name="mse_sum", initializer="zeros")
 self.total_samples = self.add_weight(
 name="total_samples", initializer="zeros", dtype="int32")

 def update_state(self, y_true, y_pred, sample_weight=None):
 y_true = tf.one_hot(y_true, depth=tf.shape(y_pred)[1])
 mse = tf.reduce_sum(tf.square(y_true - y_pred))
 self.mse_sum.assign_add(mse)
 num_samples = tf.shape(y_pred)[0]
 self.total_samples.assign_add(num_samples)

You use the result() method to return the current value of the metric:

 def result(self):
 return tf.sqrt(self.mse_sum / tf.cast(self.total_samples, tf.float32))

Meanwhile, you also need to expose a way to reset the metric state without having to
reinstantiate it—this enables the same metric objects to be used across different
epochs of training or across both training and evaluation. You do this with the
reset_state() method:

 def reset_state(self):
 self.mse_sum.assign(0.)
 self.total_samples.assign(0)

Custom metrics can be used just like built-in ones. Let’s test-drive our own metric:

model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy", RootMeanSquaredError()])
model.fit(train_images, train_labels,
 epochs=3,
 validation_data=(val_images, val_labels))
test_metrics = model.evaluate(test_images, test_labels)

You can now see the fit() progress bar displaying the RMSE of your model.

7.3.2 Using callbacks

Launching a training run on a large dataset for tens of epochs using model.fit() can
be a bit like launching a paper airplane: past the initial impulse, you don’t have any
control over its trajectory or its landing spot. If you want to avoid bad outcomes (and
thus wasted paper airplanes), it’s smarter to use, not a paper plane, but a drone that
can sense its environment, send data back to its operator, and automatically make

Define the state
variables in the

constructor. Like
for layers, you
have access to

the add_weight()
method.

Implement the state update logic in update_state(). The y_true argument
is the targets (or labels) for one batch, while y_pred represents the

corresponding predictions from the model. You can ignore the
sample_weight argument—we won’t use it here.

To match our
MNIST model, we

expect categorical
predictions and

integer labels.

188 CHAPTER 7 Working with Keras: A deep dive

steering decisions based on its current state. The Keras callbacks API will help you
transform your call to model.fit() from a paper airplane into a smart, autonomous
drone that can self-introspect and dynamically take action.

 A callback is an object (a class instance implementing specific methods) that is
passed to the model in the call to fit() and that is called by the model at various
points during training. It has access to all the available data about the state of the
model and its performance, and it can take action: interrupt training, save a model,
load a different weight set, or otherwise alter the state of the model.

 Here are some examples of ways you can use callbacks:

 Model checkpointing—Saving the current state of the model at different points
during training.

 Early stopping—Interrupting training when the validation loss is no longer
improving (and of course, saving the best model obtained during training).

 Dynamically adjusting the value of certain parameters during training—Such as the
learning rate of the optimizer.

 Logging training and validation metrics during training, or visualizing the representa-
tions learned by the model as they’re updated—The fit() progress bar that you’re
familiar with is in fact a callback!

The keras.callbacks module includes a number of built-in callbacks (this is not an
exhaustive list):

keras.callbacks.ModelCheckpoint
keras.callbacks.EarlyStopping
keras.callbacks.LearningRateScheduler
keras.callbacks.ReduceLROnPlateau
keras.callbacks.CSVLogger

Let’s review two of them to give you an idea of how to use them: EarlyStopping and
ModelCheckpoint.

THE EARLYSTOPPING AND MODELCHECKPOINT CALLBACKS

When you’re training a model, there are many things you can’t predict from the start.
In particular, you can’t tell how many epochs will be needed to get to an optimal vali-
dation loss. Our examples so far have adopted the strategy of training for enough
epochs that you begin overfitting, using the first run to figure out the proper number
of epochs to train for, and then finally launching a new training run from scratch
using this optimal number. Of course, this approach is wasteful. A much better way to
handle this is to stop training when you measure that the validation loss is no longer
improving. This can be achieved using the EarlyStopping callback.

 The EarlyStopping callback interrupts training once a target metric being moni-
tored has stopped improving for a fixed number of epochs. For instance, this callback
allows you to interrupt training as soon as you start overfitting, thus avoiding having to
retrain your model for a smaller number of epochs. This callback is typically used in

189Using built-in training and evaluation loops

combination with ModelCheckpoint, which lets you continually save the model during
training (and, optionally, save only the current best model so far: the version of the
model that achieved the best performance at the end of an epoch).

callbacks_list = [
 keras.callbacks.EarlyStopping(
 monitor="val_accuracy",
 patience=2,
),
 keras.callbacks.ModelCheckpoint(
 filepath="checkpoint_path.keras",
 monitor="val_loss",
 save_best_only=True,
)
]
model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=10,
 callbacks=callbacks_list,
 validation_data=(val_images, val_labels))

Note that you can always save models manually after training as well—just call
model.save('my_checkpoint_path'). To reload the model you’ve saved, just use

model = keras.models.load_model("checkpoint_path.keras")

7.3.3 Writing your own callbacks

If you need to take a specific action during training that isn’t covered by one of the
built-in callbacks, you can write your own callback. Callbacks are implemented by sub-
classing the keras.callbacks.Callback class. You can then implement any number
of the following transparently named methods, which are called at various points
during training:

on_epoch_begin(epoch, logs)
on_epoch_end(epoch, logs)
on_batch_begin(batch, logs)
on_batch_end(batch, logs)
on_train_begin(logs)
on_train_end(logs)

Listing 7.19 Using the callbacks argument in the fit() method

Callbacks are passed to the model via the
callbacks argument in fit(), which takes a list of

callbacks. You can pass any number of callbacks.

Interrupts training when
improvement stops

Monitors the model’s
validation accuracy

Interrupts training when
accuracy has stopped
improving for two epochs

Saves the
current

weights after
every epoch

Path to the
destination

model file
These two arguments mean you won’t
overwrite the model file unless val_loss
has improved, which allows you to keep
the best model seen during training.

You monitor accuracy,
so it should be part of
the model’s metrics.

Note that because the callback
will monitor validation loss and
validation accuracy, you need to pass
validation_data to the call to fit().

Called at the start
of every epoch

Called at the end
of every epoch

Called right before
processing each batch

Called right after
processing each batch

Called at the start
of training

Called at the end
of training

190 CHAPTER 7 Working with Keras: A deep dive

These methods are all called with a logs argument, which is a dictionary containing
information about the previous batch, epoch, or training run—training and valida-
tion metrics, and so on. The on_epoch_* and on_batch_* methods also take the
epoch or batch index as their first argument (an integer).

 Here’s a simple example that saves a list of per-batch loss values during training
and saves a graph of these values at the end of each epoch.

from matplotlib import pyplot as plt

class LossHistory(keras.callbacks.Callback):
 def on_train_begin(self, logs):
 self.per_batch_losses = []

 def on_batch_end(self, batch, logs):
 self.per_batch_losses.append(logs.get("loss"))

 def on_epoch_end(self, epoch, logs):
 plt.clf()
 plt.plot(range(len(self.per_batch_losses)), self.per_batch_losses,
 label="Training loss for each batch")
 plt.xlabel(f"Batch (epoch {epoch})")
 plt.ylabel("Loss")
 plt.legend()
 plt.savefig(f"plot_at_epoch_{epoch}")
 self.per_batch_losses = []

Let’s test-drive it:

model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=10,
 callbacks=[LossHistory()],
 validation_data=(val_images, val_labels))

We get plots that look like figure 7.5.

7.3.4 Monitoring and visualization with TensorBoard

To do good research or develop good models, you need rich, frequent feedback about
what’s going on inside your models during your experiments. That’s the point of run-
ning experiments: to get information about how well a model performs—as much
information as possible. Making progress is an iterative process, a loop—you start with
an idea and express it as an experiment, attempting to validate or invalidate your idea.
You run this experiment and process the information it generates. This inspires your
next idea. The more iterations of this loop you’re able to run, the more refined and

Listing 7.20 Creating a custom callback by subclassing the Callback class

191Using built-in training and evaluation loops

powerful your ideas become. Keras helps you go from idea to experiment in the least
possible time, and fast GPUs can help you get from experiment to result as quickly as
possible. But what about processing the experiment’s results? That’s where Tensor-
Board comes in (see figure 7.6).

TensorBoard (www.tensorflow.org/tensorboard) is a browser-based application that
you can run locally. It’s the best way to monitor everything that goes on inside your
model during training. With TensorBoard, you can

 Visually monitor metrics during training
 Visualize your model architecture
 Visualize histograms of activations and gradients
 Explore embeddings in 3D

If you’re monitoring more information than just the model’s final loss, you can
develop a clearer vision of what the model does and doesn’t do, and you can make
progress more quickly.

Figure 7.5 The output of our custom history plotting callback

Idea

Visualization

framework:

TensorBoard

Deep learning

framework:

Keras

GPUs, TPUs

Results Experiment

Figure 7.6 The loop of progress

http://www.tensorflow.org/tensorboard

192 CHAPTER 7 Working with Keras: A deep dive

 The easiest way to use TensorBoard with a Keras model and the fit() method is to
use the keras.callbacks.TensorBoard callback.

 In the simplest case, just specify where you want the callback to write logs, and
you’re good to go:

model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])

tensorboard = keras.callbacks.TensorBoard(
 log_dir="/full_path_to_your_log_dir",
)
model.fit(train_images, train_labels,
 epochs=10,
 validation_data=(val_images, val_labels),
 callbacks=[tensorboard])

Once the model starts running, it will write logs at the target location. If you are run-
ning your Python script on a local machine, you can then launch the local Tensor-
Board server using the following command (note that the tensorboard executable
should be already available if you have installed TensorFlow via pip; if not, you can
install TensorBoard manually via pip install tensorboard):

tensorboard --logdir /full_path_to_your_log_dir

You can then navigate to the URL that the command returns in order to access the
TensorBoard interface.

 If you are running your script in a Colab notebook, you can run an embedded Ten-
sorBoard instance as part of your notebook, using the following commands:

%load_ext tensorboard
%tensorboard --logdir /full_path_to_your_log_dir

In the TensorBoard interface, you will be able to monitor live graphs of your training
and evaluation metrics (see figure 7.7).

7.4 Writing your own training and evaluation loops
The fit() workflow strikes a nice balance between ease of use and flexibility. It’s what
you will use most of the time. However, it isn’t meant to support everything a deep
learning researcher may want to do, even with custom metrics, custom losses, and cus-
tom callbacks.

 After all, the built-in fit() workflow is solely focused on supervised learning : a setup
where there are known targets (also called labels or annotations) associated with your
input data, and where you compute your loss as a function of these targets and the
model’s predictions. However, not every form of machine learning falls into this

193Writing your own training and evaluation loops

category. There are other setups where no explicit targets are present, such as genera-
tive learning (which we will discuss in chapter 12), self-supervised learning (where targets
are obtained from the inputs), and reinforcement learning (where learning is driven by
occasional “rewards,” much like training a dog). Even if you’re doing regular super-
vised learning, as a researcher, you may want to add some novel bells and whistles that
require low-level flexibility.

 Whenever you find yourself in a situation where the built-in fit() is not enough,
you will need to write your own custom training logic. You already saw simple exam-
ples of low-level training loops in chapters 2 and 3. As a reminder, the contents of a
typical training loop look like this:

1 Run the forward pass (compute the model’s output) inside a gradient tape to
obtain a loss value for the current batch of data.

2 Retrieve the gradients of the loss with regard to the model’s weights.
3 Update the model’s weights so as to lower the loss value on the current batch

of data.

Figure 7.7 TensorBoard can be used for easy monitoring of training and evaluation metrics.

194 CHAPTER 7 Working with Keras: A deep dive

These steps are repeated for as many batches as necessary. This is essentially what
fit() does under the hood. In this section, you will learn to reimplement fit() from
scratch, which will give you all the knowledge you need to write any training algorithm
you may come up with.

 Let’s go over the details.

7.4.1 Training versus inference

In the low-level training loop examples you’ve seen so far, step 1 (the forward pass)
was done via predictions = model(inputs), and step 2 (retrieving the gradients
computed by the gradient tape) was done via gradients = tape.gradient(loss,
model.weights). In the general case, there are actually two subtleties you need to take
into account.

 Some Keras layers, such as the Dropout layer, have different behaviors during training
and during inference (when you use them to generate predictions). Such layers expose
a training Boolean argument in their call() method. Calling dropout(inputs,
training=True) will drop some activation entries, while calling dropout(inputs,
training=False) does nothing. By extension, Functional and Sequential models also
expose this training argument in their call() methods. Remember to pass training
=True when you call a Keras model during the forward pass! Our forward pass thus
becomes predictions = model(inputs, training=True).

 In addition, note that when you retrieve the gradients of the weights of your
model, you should not use tape.gradients(loss, model.weights), but rather tape
.gradients(loss, model.trainable_weights). Indeed, layers and models own two
kinds of weights:

 Trainable weights—These are meant to be updated via backpropagation to mini-
mize the loss of the model, such as the kernel and bias of a Dense layer.

 Non-trainable weights—These are meant to be updated during the forward pass
by the layers that own them. For instance, if you wanted a custom layer to keep
a counter of how many batches it has processed so far, that information would
be stored in a non-trainable weight, and at each batch, your layer would incre-
ment the counter by one.

Among Keras built-in layers, the only layer that features non-trainable weights is the
BatchNormalization layer, which we will discuss in chapter 9. The BatchNormalization
layer needs non-trainable weights in order to track information about the mean and
standard deviation of the data that passes through it, so as to perform an online
approximation of feature normalization (a concept you learned about in chapter 6).

 Taking into account these two details, a supervised-learning training step ends up
looking like this:

def train_step(inputs, targets):
 with tf.GradientTape() as tape:
 predictions = model(inputs, training=True)
 loss = loss_fn(targets, predictions)

195Writing your own training and evaluation loops

 gradients = tape.gradients(loss, model.trainable_weights)
 optimizer.apply_gradients(zip(model.trainable_weights, gradients))

7.4.2 Low-level usage of metrics

In a low-level training loop, you will probably want to leverage Keras metrics (whether
custom ones or the built-in ones). You’ve already learned about the metrics API: sim-
ply call update_state(y_true, y_pred) for each batch of targets and predictions, and
then use result() to query the current metric value:

metric = keras.metrics.SparseCategoricalAccuracy()
targets = [0, 1, 2]
predictions = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
metric.update_state(targets, predictions)
current_result = metric.result()
print(f"result: {current_result:.2f}")

You may also need to track the average of a scalar value, such as the model’s loss. You
can do this via the keras.metrics.Mean metric:

values = [0, 1, 2, 3, 4]
mean_tracker = keras.metrics.Mean()
for value in values:
 mean_tracker.update_state(value)
print(f"Mean of values: {mean_tracker.result():.2f}")

Remember to use metric.reset_state() when you want to reset the current results
(at the start of a training epoch or at the start of evaluation).

7.4.3 A complete training and evaluation loop

Let’s combine the forward pass, backward pass, and metrics tracking into a fit()-like
training step function that takes a batch of data and targets and returns the logs that
would get displayed by the fit() progress bar.

model = get_mnist_model()

loss_fn = keras.losses.SparseCategoricalCrossentropy()
optimizer = keras.optimizers.RMSprop()
metrics = [keras.metrics.SparseCategoricalAccuracy()]
loss_tracking_metric = keras.metrics.Mean()

def train_step(inputs, targets):
 with tf.GradientTape() as tape:
 predictions = model(inputs, training=True)
 loss = loss_fn(targets, predictions)
 gradients = tape.gradient(loss, model.trainable_weights)
 optimizer.apply_gradients(zip(gradients, model.trainable_weights))

Listing 7.21 Writing a step-by-step training loop: the training step function

Prepare the loss
function.

Prepare the
optimizer.

Prepare the list of
metrics to monitor.

Prepare a Mean metric tracker to
keep track of the loss average.

Run the forward pass. Note
that we pass training=True.

Run the backward pass. Note that
we use model.trainable_weights.

196 CHAPTER 7 Working with Keras: A deep dive

 logs = {}
 for metric in metrics:
 metric.update_state(targets, predictions)
 logs[metric.name] = metric.result()

 loss_tracking_metric.update_state(loss)
 logs["loss"] = loss_tracking_metric.result()
 return logs

We will need to reset the state of our metrics at the start of each epoch and before run-
ning evaluation. Here’s a utility function to do it.

def reset_metrics():
 for metric in metrics:
 metric.reset_state()
 loss_tracking_metric.reset_state()

We can now lay out our complete training loop. Note that we use a tf.data.Dataset
object to turn our NumPy data into an iterator that iterates over the data in batches of
size 32.

training_dataset = tf.data.Dataset.from_tensor_slices(
 (train_images, train_labels))
training_dataset = training_dataset.batch(32)
epochs = 3
for epoch in range(epochs):
 reset_metrics()
 for inputs_batch, targets_batch in training_dataset:
 logs = train_step(inputs_batch, targets_batch)
 print(f"Results at the end of epoch {epoch}")
 for key, value in logs.items():
 print(f"...{key}: {value:.4f}")

And here’s the evaluation loop: a simple for loop that repeatedly calls a test_step()
function, which processes a single batch of data. The test_step() function is just a sub-
set of the logic of train_step(). It omits the code that deals with updating the weights
of the model—that is to say, everything involving the GradientTape and the optimizer.

def test_step(inputs, targets):
 predictions = model(inputs, training=False)
 loss = loss_fn(targets, predictions)

 logs = {}
 for metric in metrics:
 metric.update_state(targets, predictions)
 logs["val_" + metric.name] = metric.result()

Listing 7.22 Writing a step-by-step training loop: resetting the metrics

Listing 7.23 Writing a step-by-step training loop: the loop itself

Listing 7.24 Writing a step-by-step evaluation loop

Keep track
of metrics.

Keep track of the
loss average.

Return the current values of
the metrics and the loss.

Note that we pass
training=False.

197Writing your own training and evaluation loops

 loss_tracking_metric.update_state(loss)
 logs["val_loss"] = loss_tracking_metric.result()
 return logs

val_dataset = tf.data.Dataset.from_tensor_slices((val_images, val_labels))
val_dataset = val_dataset.batch(32)
reset_metrics()
for inputs_batch, targets_batch in val_dataset:
 logs = test_step(inputs_batch, targets_batch)
print("Evaluation results:")
for key, value in logs.items():
 print(f"...{key}: {value:.4f}")

Congrats—you’ve just reimplemented fit() and evaluate()! Or almost: fit()
and evaluate() support many more features, including large-scale distributed com-
putation, which requires a bit more work. It also includes several key performance
optimizations.

 Let’s take a look at one of these optimizations: TensorFlow function compilation.

7.4.4 Make it fast with tf.function

You may have noticed that your custom loops are running significantly slower than the
built-in fit() and evaluate(), despite implementing essentially the same logic.
That’s because, by default, TensorFlow code is executed line by line, eagerly, much like
NumPy code or regular Python code. Eager execution makes it easier to debug your
code, but it is far from optimal from a performance standpoint.

 It’s more performant to compile your TensorFlow code into a computation graph that
can be globally optimized in a way that code interpreted line by line cannot. The syn-
tax to do this is very simple: just add a @tf.function to any function you want to com-
pile before executing, as shown in the following listing.

@tf.function
def test_step(inputs, targets):
 predictions = model(inputs, training=False)
 loss = loss_fn(targets, predictions)

 logs = {}
 for metric in metrics:
 metric.update_state(targets, predictions)
 logs["val_" + metric.name] = metric.result()

 loss_tracking_metric.update_state(loss)
 logs["val_loss"] = loss_tracking_metric.result()
 return logs

val_dataset = tf.data.Dataset.from_tensor_slices((val_images, val_labels))
val_dataset = val_dataset.batch(32)
reset_metrics()

Listing 7.25 Adding a @tf.function decorator to our evaluation-step function

This is the
only line that
changed.

198 CHAPTER 7 Working with Keras: A deep dive

for inputs_batch, targets_batch in val_dataset:
 logs = test_step(inputs_batch, targets_batch)
print("Evaluation results:")
for key, value in logs.items():
 print(f"...{key}: {value:.4f}")

On the Colab CPU, we go from taking 1.80 s to run the evaluation loop to only 0.8 s.
Much faster!

 Remember, while you are debugging your code, prefer running it eagerly, without
any @tf.function decorator. It’s easier to track bugs this way. Once your code is work-
ing and you want to make it fast, add a @tf.function decorator to your training step
and your evaluation step—or any other performance-critical function.

7.4.5 Leveraging fit() with a custom training loop

In the previous sections, we were writing our own training loop entirely from scratch.
Doing so provides you with the most flexibility, but you end up writing a lot of code
while simultaneously missing out on many convenient features of fit(), such as call-
backs or built-in support for distributed training.

 What if you need a custom training algorithm, but you still want to leverage the
power of the built-in Keras training logic? There’s actually a middle ground between
fit() and a training loop written from scratch: you can provide a custom training
step function and let the framework do the rest.

 You can do this by overriding the train_step() method of the Model class. This is
the function that is called by fit() for every batch of data. You will then be able to call
fit() as usual, and it will be running your own learning algorithm under the hood.

 Here’s a simple example:

 We create a new class that subclasses keras.Model.
 We override the method train_step(self, data). Its contents are nearly iden-

tical to what we used in the previous section. It returns a dictionary mapping
metric names (including the loss) to their current values.

 We implement a metrics property that tracks the model’s Metric instances.
This enables the model to automatically call reset_state() on the model’s
metrics at the start of each epoch and at the start of a call to evaluate(), so you
don’t have to do it by hand.

loss_fn = keras.losses.SparseCategoricalCrossentropy()
loss_tracker = keras.metrics.Mean(name="loss")

class CustomModel(keras.Model):
 def train_step(self, data):
 inputs, targets = data
 with tf.GradientTape() as tape:
 predictions = self(inputs, training=True)
 loss = loss_fn(targets, predictions)

Listing 7.26 Implementing a custom training step to use with fit()

This metric object will be used to
track the average of per-batch losses
during training and evaluation.

We override the
train_step method.

We use self(inputs,
training=True) instead
of model(inputs,
training=True), since our
model is the class itself.

199Writing your own training and evaluation loops

 gradients = tape.gradient(loss, model.trainable_weights)
 optimizer.apply_gradients(zip(gradients, model.trainable_weights))

 loss_tracker.update_state(loss)
 return {"loss": loss_tracker.result()}

 @property
 def metrics(self):
 return [loss_tracker]

We can now instantiate our custom model, compile it (we only pass the optimizer, since
the loss is already defined outside of the model), and train it using fit() as usual:

inputs = keras.Input(shape=(28 * 28,))
features = layers.Dense(512, activation="relu")(inputs)
features = layers.Dropout(0.5)(features)
outputs = layers.Dense(10, activation="softmax")(features)
model = CustomModel(inputs, outputs)

model.compile(optimizer=keras.optimizers.RMSprop())
model.fit(train_images, train_labels, epochs=3)

There are a couple of points to note:

 This pattern does not prevent you from building models with the Functional
API. You can do this whether you’re building Sequential models, Functional
API models, or subclassed models.

 You don’t need to use a @tf.function decorator when you override train_
step—the framework does it for you.

Now, what about metrics, and what about configuring the loss via compile()? After
you’ve called compile(), you get access to the following:

 self.compiled_loss—The loss function you passed to compile().
 self.compiled_metrics—A wrapper for the list of metrics you passed, which

allows you to call self.compiled_metrics.update_state() to update all of
your metrics at once.

 self.metrics—The actual list of metrics you passed to compile(). Note that it
also includes a metric that tracks the loss, similar to what we did manually with
our loss_tracking_metric earlier.

We can thus write

class CustomModel(keras.Model):
 def train_step(self, data):
 inputs, targets = data
 with tf.GradientTape() as tape:
 predictions = self(inputs, training=True)
 loss = self.compiled_loss(targets, predictions)
 gradients = tape.gradient(loss, model.trainable_weights)

We update the loss
tracker metric that
tracks the average
of the loss.

We return the average loss
so far by querying the loss
tracker metric.

Any metric you
would like to reset
across epochs should
be listed here.

Compute
the loss via
self.compiled_
loss.

200 CHAPTER 7 Working with Keras: A deep dive

 optimizer.apply_gradients(zip(gradients, model.trainable_weights))
 self.compiled_metrics.update_state(targets, predictions)
 return {m.name: m.result() for m in self.metrics}

Let’s try it:

inputs = keras.Input(shape=(28 * 28,))
features = layers.Dense(512, activation="relu")(inputs)
features = layers.Dropout(0.5)(features)
outputs = layers.Dense(10, activation="softmax")(features)
model = CustomModel(inputs, outputs)

model.compile(optimizer=keras.optimizers.RMSprop(),
 loss=keras.losses.SparseCategoricalCrossentropy(),
 metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=3)

That was a lot of information, but you now know enough to use Keras to do almost
anything.

Summary
 Keras offers a spectrum of different workflows, based on the principle of progres-

sive disclosure of complexity. They all smoothly inter-operate together.
 You can build models via the Sequential class, via the Functional API, or by sub-

classing the Model class. Most of the time, you’ll be using the Functional API.
 The simplest way to train and evaluate a model is via the default fit() and

evaluate() methods.
 Keras callbacks provide a simple way to monitor models during your call to

fit() and automatically take action based on the state of the model.
 You can also fully take control of what fit() does by overriding the train_

step() method.
 Beyond fit(), you can also write your own training loops entirely from scratch.

This is useful for researchers implementing brand-new training algorithms.

Update the model’s metrics
via self.compiled_metrics.

Return a dict mapping metric
names to their current value.

