
238

Advanced deep learning
for computer vision

The previous chapter gave you a first introduction to deep learning for computer
vision via simple models (stacks of Conv2D and MaxPooling2D layers) and a simple
use case (binary image classification). But there’s more to computer vision than
image classification! This chapter dives deeper into more diverse applications and
advanced best practices.

9.1 Three essential computer vision tasks
So far, we’ve focused on image classification models: an image goes in, a label
comes out. “This image likely contains a cat; this other one likely contains a dog.”
But image classification is only one of several possible applications of deep learning

This chapter covers
 The different branches of computer vision: image 

classification, image segmentation, object 
detection

 Modern convnet architecture patterns: residual 
connections, batch normalization, depthwise 
separable convolutions

 Techniques for visualizing and interpreting what 
convnets learn



239Three essential computer vision tasks

in computer vision. In general, there are three essential computer vision tasks you
need to know about:

 Image classification—Where the goal is to assign one or more labels to an image.
It may be either single-label classification (an image can only be in one cate-
gory, excluding the others), or multi-label classification (tagging all categories
that an image belongs to, as seen in figure 9.1). For example, when you search
for a keyword on the Google Photos app, behind the scenes you’re querying a
very large multilabel classification model—one with over 20,000 different classes,
trained on millions of images.

 Image segmentation—Where the goal is to “segment” or “partition” an image into
different areas, with each area usually representing a category (as seen in fig-
ure 9.1). For instance, when Zoom or Google Meet diplays a custom back-
ground behind you in a video call, it’s using an image segmentation model to
tell your face apart from what’s behind it, at pixel precision.

 Object detection—Where the goal is to draw rectangles (called bounding boxes)
around objects of interest in an image, and associate each rectangle with a class.
A self-driving car could use an object-detection model to monitor cars, pedestri-
ans, and signs in view of its cameras, for instance.

Figure 9.1 The three main computer vision tasks: classification, segmentation, detection



240 CHAPTER 9 Advanced deep learning for computer vision

Deep learning for computer vision also encompasses a number of somewhat more
niche tasks besides these three, such as image similarity scoring (estimating how visu-
ally similar two images are), keypoint detection (pinpointing attributes of interest in
an image, such as facial features), pose estimation, 3D mesh estimation, and so on.
But to start with, image classification, image segmentation, and object detection form
the foundation that every machine learning engineer should be familiar with. Most
computer vision applications boil down to one of these three.

 You’ve seen image classification in action in the previous chapter. Next, let’s dive
into image segmentation. It’s a very useful and versatile technique, and you can straight-
forwardly approach it with what you’ve already learned so far.

 Note that we won’t cover object detection, because it would be too specialized and
too complicated for an introductory book. However, you can check out the RetinaNet
example on keras.io, which shows how to build and train an object detection model
from scratch in Keras in around 450 lines of code (https://keras.io/examples/vision/
retinanet/). 

9.2 An image segmentation example
Image segmentation with deep learning is about using a model to assign a class to
each pixel in an image, thus segmenting the image into different zones (such as
“background” and “foreground,” or “road,” “car,” and “sidewalk”). This general cat-
egory of techniques can be used to power a considerable variety of valuable applica-
tions in image and video editing, autonomous driving, robotics, medical imaging,
and so on.

 There are two different flavors of image segmentation that you should know about:

 Semantic segmentation, where each pixel is independently classified into a seman-
tic category, like “cat.” If there are two cats in the image, the corresponding pix-
els are all mapped to the same generic “cat” category (see figure 9.2).

 Instance segmentation, which seeks not only to classify image pixels by category,
but also to parse out individual object instances. In an image with two cats in it,
instance segmentation would treat “cat 1” and “cat 2” as two separate classes of
pixels (see figure 9.2).

In this example, we’ll focus on semantic segmentation: we’ll be looking once again at
images of cats and dogs, and this time we’ll learn how to tell apart the main subject
and its background.

 We’ll work with the Oxford-IIIT Pets dataset (www.robots.ox.ac.uk/~vgg/data/
pets/), which contains 7,390 pictures of various breeds of cats and dogs, together with
foreground-background segmentation masks for each picture. A segmentation mask is
the image-segmentation equivalent of a label: it’s an image the same size as the input
image, with a single color channel where each integer value corresponds to the class

https://keras.io/examples/vision/retinanet/
https://keras.io/examples/vision/retinanet/
https://keras.io/examples/vision/retinanet/
http://www.robots.ox.ac.uk/~vgg/data/pets/
http://www.robots.ox.ac.uk/~vgg/data/pets/
http://www.robots.ox.ac.uk/~vgg/data/pets/


241An image segmentation example

of the corresponding pixel in the input image. In our case, the pixels of our segmen-
tation masks can take one of three integer values:

 1 (foreground)
 2 (background)
 3 (contour)

Let’s start by downloading and uncompressing our dataset, using the wget and tar
shell utilities:

!wget http:/ /www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
!wget http:/ /www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
!tar -xf images.tar.gz
!tar -xf annotations.tar.gz

The input pictures are stored as JPG files in the images/ folder (such as images/Abys-
sinian_1.jpg), and the corresponding segmentation mask is stored as a PNG file with
the same name in the annotations/trimaps/ folder (such as annotations/trimaps/
Abyssinian_1.png).

 Let’s prepare the list of input file paths, as well as the list of the corresponding
mask file paths:

import os
 
input_dir = "images/" 
target_dir = "annotations/trimaps/" 
 
input_img_paths = sorted(
    [os.path.join(input_dir, fname)
     for fname in os.listdir(input_dir)
     if fname.endswith(".jpg")])

Figure 9.2 Semantic segmentation vs. instance segmentation



242 CHAPTER 9 Advanced deep learning for computer vision

target_paths = sorted(
    [os.path.join(target_dir, fname)
     for fname in os.listdir(target_dir)
     if fname.endswith(".png") and not fname.startswith(".")])

Now, what does one of these inputs and its mask look like? Let’s take a quick look.
Here’s a sample image (see figure 9.3):

import matplotlib.pyplot as plt 
from tensorflow.keras.utils import load_img, img_to_array
 
plt.axis("off")
plt.imshow(load_img(input_img_paths[9]))   

And here is its corresponding target (see figure 9.4):

def display_target(target_array):
    normalized_array = (target_array.astype("uint8") - 1) * 127   
    plt.axis("off")
    plt.imshow(normalized_array[:, :, 0])
 
img = img_to_array(load_img(target_paths[9], color_mode="grayscale"))   
display_target(img)

Display input 
image number 9.

Figure 9.3 An example image

The original labels are 1, 2, and 3. We subtract 1 so that the
labels range from 0 to 2, and then we multiply by 127 so that

the labels become 0 (black), 127 (gray), 254 (near-white).

We use color_mode="grayscale" so
that the image we load is treated as

having a single color channel.



243An image segmentation example

Next, let’s load our inputs and targets into two NumPy arrays, and let’s split the arrays
into a training and a validation set. Since the dataset is very small, we can just load
everything into memory:

import numpy as np 
import random 
 
img_size = (200, 200)  
num_imgs = len(input_img_paths)  

random.Random(1337).shuffle(input_img_paths)  
random.Random(1337).shuffle(target_paths)  

def path_to_input_image(path):
    return img_to_array(load_img(path, target_size=img_size))
 
def path_to_target(path):
    img = img_to_array(
        load_img(path, target_size=img_size, color_mode="grayscale"))
    img = img.astype("uint8") - 1   
    return img
 
input_imgs = np.zeros((num_imgs,) + img_size + (3,), dtype="float32")  
targets = np.zeros((num_imgs,) + img_size + (1,), dtype="uint8")       
for i in range(num_imgs):       

input_imgs[i] = path_to_input_image(input_img_paths[i])     
targets[i] = path_to_target(target_paths[i])     

num_val_samples = 1000  
train_input_imgs = input_imgs[:-num_val_samples]   
train_targets = targets[:-num_val_samples]   
val_input_imgs = input_imgs[-num_val_samples:]   
val_targets = targets[-num_val_samples:]   

Figure 9.4 The corresponding 
target mask

We resize everything 
to 200 × 200.

Total number of samples 
in the data

Shuffle the file paths (they were 
originally sorted by breed). We use the 
same seed (1337) in both statements to 
ensure that the input paths and target 
paths stay in the same order.

Subtract 1 so that our 
labels become 0, 1, and 2.

Load all images in the input_imgs
float32 array and their masks in the

targets uint8 array (same order). The
inputs have three channels (RBG values)

and the targets have a single channel
(which contains integer labels).

Reserve
1,000

samples for
validation.

Split the
data into a

training and a
validation set.



244 CHAPTER 9 Advanced deep learning for computer vision

Now it’s time to define our model:

from tensorflow import keras 
from tensorflow.keras import layers
 
def get_model(img_size, num_classes):
    inputs = keras.Input(shape=img_size + (3,))
    x = layers.Rescaling(1./255)(inputs)      

    x = layers.Conv2D(64, 3, strides=2, activation="relu", padding="same")(x)
    x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)
    x = layers.Conv2D(128, 3, strides=2, activation="relu", padding="same")(x)
    x = layers.Conv2D(128, 3, activation="relu", padding="same")(x)
    x = layers.Conv2D(256, 3, strides=2, padding="same", activation="relu")(x)
    x = layers.Conv2D(256, 3, activation="relu", padding="same")(x)
 

    x = layers.Conv2DTranspose(256, 3, activation="relu", padding="same")(x)
    x = layers.Conv2DTranspose(
        256, 3, activation="relu", padding="same", strides=2)(x)
    x = layers.Conv2DTranspose(128, 3, activation="relu", padding="same")(x)
    x = layers.Conv2DTranspose(
        128, 3, activation="relu", padding="same", strides=2)(x)
    x = layers.Conv2DTranspose(64, 3, activation="relu", padding="same")(x)
    x = layers.Conv2DTranspose(
        64, 3, activation="relu", padding="same", strides=2)(x)
 

    outputs = layers.Conv2D(num_classes, 3, activation="softmax", 
padding="same")(x)                                           

    model = keras.Model(inputs, outputs)
    return model
 

model = get_model(img_size=img_size, num_classes=3)
model.summary()

Here’s the output of the model.summary() call:

Model: "model" 
_________________________________________________________________
Layer (type)                 Output Shape              Param # 
=================================================================
input_1 (InputLayer)         [(None, 200, 200, 3)]     0 
_________________________________________________________________
rescaling (Rescaling)        (None, 200, 200, 3)       0 
_________________________________________________________________
conv2d (Conv2D)              (None, 100, 100, 64)      1792 
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 100, 100, 64)      36928 
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 50, 50, 128)       73856 
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 50, 50, 128)       147584 
_________________________________________________________________

Don’t forget to
rescale input

images to the
[0-1] range.

Note how we use
padding="same"

everywhere to avoid
the influence of border

padding on feature
map size.

We end the model
with a per-pixel three-way

softmax to classify each
output pixel into one of

our three categories.



245An image segmentation example

conv2d_4 (Conv2D)            (None, 25, 25, 256)       295168 
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 25, 25, 256)       590080 
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 25, 25, 256)       590080 
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 50, 50, 256)       590080 
_________________________________________________________________
conv2d_transpose_2 (Conv2DTr (None, 50, 50, 128)       295040 
_________________________________________________________________
conv2d_transpose_3 (Conv2DTr (None, 100, 100, 128)     147584 
_________________________________________________________________
conv2d_transpose_4 (Conv2DTr (None, 100, 100, 64)      73792 
_________________________________________________________________
conv2d_transpose_5 (Conv2DTr (None, 200, 200, 64)      36928 
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 200, 200, 3)       1731 
=================================================================
Total params: 2,880,643 
Trainable params: 2,880,643 
Non-trainable params: 0 
_________________________________________________________________

The first half of the model closely resembles the kind of convnet you’d use for image
classification: a stack of Conv2D layers, with gradually increasing filter sizes. We down-
sample our images three times by a factor of two each, ending up with activations of size
(25, 25, 256). The purpose of this first half is to encode the images into smaller feature
maps, where each spatial location (or pixel) contains information about a large spatial
chunk of the original image. You can understand it as a kind of compression.

 One important difference between the first half of this model and the classifica-
tion models you’ve seen before is the way we do downsampling: in the classification
convnets from the last chapter, we used MaxPooling2D layers to downsample feature
maps. Here, we downsample by adding strides to every other convolution layer (if you
don’t remember the details of how convolution strides work, see “Understanding con-
volution strides” in section 8.1.1). We do this because, in the case of image segmenta-
tion, we care a lot about the spatial location of information in the image, since we need
to produce per-pixel target masks as output of the model. When you do 2 × 2 max
pooling, you are completely destroying location information within each pooling win-
dow: you return one scalar value per window, with zero knowledge of which of the
four locations in the windows the value came from. So while max pooling layers per-
form well for classification tasks, they would hurt us quite a bit for a segmentation
task. Meanwhile, strided convolutions do a better job at downsampling feature maps
while retaining location information. Throughout this book, you’ll notice that we
tend to use strides instead of max pooling in any model that cares about feature loca-
tion, such as the generative models in chapter 12.

 The second half of the model is a stack of Conv2DTranspose layers. What are those?
Well, the output of the first half of the model is a feature map of shape (25, 25, 256),



246 CHAPTER 9 Advanced deep learning for computer vision

but we want our final output to have the same shape as the target masks, (200, 200,
3). Therefore, we need to apply a kind of inverse of the transformations we’ve applied
so far—something that will upsample the feature maps instead of downsampling them.
That’s the purpose of the Conv2DTranspose layer: you can think of it as a kind of convolu-
tion layer that learns to upsample. If you have an input of shape (100, 100, 64), and you
run it through the layer Conv2D(128, 3, strides=2, padding="same"), you get an
output of shape (50, 50, 128). If you run this output through the layer Conv2D-
Transpose(64, 3, strides=2, padding="same"), you get back an output of shape (100,
100, 64), the same as the original. So after compressing our inputs into feature maps of
shape (25, 25, 256) via a stack of Conv2D layers, we can simply apply the corresponding
sequence of Conv2DTranspose layers to get back to images of shape (200, 200, 3).

 We can now compile and fit our model:

model.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy")
 
callbacks = [
    keras.callbacks.ModelCheckpoint("oxford_segmentation.keras",
                                    save_best_only=True)
]
 
history = model.fit(train_input_imgs, train_targets,
                    epochs=50,
                    callbacks=callbacks,
                    batch_size=64,
                    validation_data=(val_input_imgs, val_targets))

Let’s display our training and validation loss (see figure 9.5):

epochs = range(1, len(history.history["loss"]) + 1)
loss = history.history["loss"]

Figure 9.5 Displaying training and validation loss curves



247An image segmentation example

val_loss = history.history["val_loss"]
plt.figure()
plt.plot(epochs, loss, "bo", label="Training loss")
plt.plot(epochs, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.legend()

You can see that we start overfitting midway, around epoch 25. Let’s reload our best
performing model according to the validation loss, and demonstrate how to use it to
predict a segmentation mask (see figure 9.6):

from tensorflow.keras.utils import array_to_img
 
model = keras.models.load_model("oxford_segmentation.keras")
 
i = 4 
test_image = val_input_imgs[i]
plt.axis("off")
plt.imshow(array_to_img(test_image))
 
mask = model.predict(np.expand_dims(test_image, 0))[0]
 
def display_mask(pred):      
    mask = np.argmax(pred, axis=-1)
    mask *= 127 
    plt.axis("off")
    plt.imshow(mask)
 
display_mask(mask)

Utility to display 
a model’s 
prediction

Figure 9.6 A test image and its predicted segmentation mask



248 CHAPTER 9 Advanced deep learning for computer vision

There are a couple of small artifacts in our predicted mask, caused by geometric shapes
in the foreground and background. Nevertheless, our model appears to work nicely.

 By this point, throughout chapter 8 and the beginning of chapter 9, you’ve
learned the basics of how to perform image classification and image segmentation:
you can already accomplish a lot with what you know. However, the convnets that
experienced engineers develop to solve real-world problems aren’t quite as simple as
those we’ve been using in our demonstrations so far. You’re still lacking the essential
mental models and thought processes that enable experts to make quick and accurate
decisions about how to put together state-of-the-art models. To bridge that gap, you
need to learn about architecture patterns. Let’s dive in. 

9.3 Modern convnet architecture patterns
A model’s “architecture” is the sum of the choices that went into creating it: which lay-
ers to use, how to configure them, and in what arrangement to connect them. These
choices define the hypothesis space of your model: the space of possible functions that
gradient descent can search over, parameterized by the model’s weights. Like feature
engineering, a good hypothesis space encodes prior knowledge that you have about the
problem at hand and its solution. For instance, using convolution layers means that you
know in advance that the relevant patterns present in your input images are translation-
invariant. In order to effectively learn from data, you need to make assumptions about
what you’re looking for.

 Model architecture is often the difference between success and failure. If you make
inappropriate architecture choices, your model may be stuck with suboptimal metrics,
and no amount of training data will save it. Inversely, a good model architecture will
accelerate learning and will enable your model to make efficient use of the training data
available, reducing the need for large datasets. A good model architecture is one that
reduces the size of the search space or otherwise makes it easier to converge to a good point of the
search space. Just like feature engineering and data curation, model architecture is all
about making the problem simpler for gradient descent to solve. And remember that gradi-
ent descent is a pretty stupid search process, so it needs all the help it can get.

 Model architecture is more an art than a science. Experienced machine learning
engineers are able to intuitively cobble together high-performing models on their first
try, while beginners often struggle to create a model that trains at all. The keyword
here is intuitively: no one can give you a clear explanation of what works and what
doesn’t. Experts rely on pattern-matching, an ability that they acquire through exten-
sive practical experience. You’ll develop your own intuition throughout this book.
However, it’s not all about intuition either—there isn’t much in the way of actual sci-
ence, but as in any engineering discipline, there are best practices.

 In the following sections, we’ll review a few essential convnet architecture best
practices: in particular, residual connections, batch normalization, and separable convolu-
tions. Once you master how to use them, you will be able to build highly effective
image models. We will apply them to our cat vs. dog classification problem.



249Modern convnet architecture patterns

 Let’s start from the bird’s-eye view: the modularity-hierarchy-reuse (MHR) formula
for system architecture.

9.3.1 Modularity, hierarchy, and reuse

If you want to make a complex system simpler, there’s a universal recipe you can
apply: just structure your amorphous soup of complexity into modules, organize the
modules into a hierarchy, and start reusing the same modules in multiple places as
appropriate (“reuse” is another word for abstraction in this context). That’s the MHR
formula (modularity-hierarchy-reuse), and it underlies system architecture across
pretty much every domain where the term “architecture” is used. It’s at the heart of
the organization of any system of meaningful complexity, whether it’s a cathedral,
your own body, the US Navy, or the Keras codebase (see figure 9.7).

If you’re a software engineer, you’re already keenly familiar with these principles: an
effective codebase is one that is modular, hierarchical, and where you don’t reimple-
ment the same thing twice, but instead rely on reusable classes and functions. If you

Figure 9.7 Complex systems follow a hierarchical structure and are organized into distinct 
modules, which are reused multiple times (such as your four limbs, which are all variants of 
the same blueprint, or your 20 “fingers”).



250 CHAPTER 9 Advanced deep learning for computer vision

factor your code by following these principles, you could say you’re doing “software
architecture.”

 Deep learning itself is simply the application of this recipe to continuous optimiza-
tion via gradient descent: you take a classic optimization technique (gradient descent
over a continuous function space), and you structure the search space into modules
(layers), organized into a deep hierarchy (often just a stack, the simplest kind of hier-
archy), where you reuse whatever you can (for instance, convolutions are all about
reusing the same information in different spatial locations).

 Likewise, deep learning model architecture is primarily about making clever use of
modularity, hierarchy, and reuse. You’ll notice that all popular convnet architectures
are not only structured into layers, they’re structured into repeated groups of layers
(called “blocks” or “modules”). For instance, the popular VGG16 architecture we used
in the previous chapter is structured into repeated “conv, conv, max pooling” blocks
(see figure 9.8).

 Further, most convnets often feature pyramid-like structures (feature hierarchies).
Recall, for example, the progression in the number of convolution filters we used in
the first convnet we built in the previous chapter: 32, 64, 128. The number of filters
grows with layer depth, while the size of the feature maps shrinks accordingly. You’ll
notice the same pattern in the blocks of the VGG16 model (see figure 9.8).

224 × 224 × 3

28 × 28 × 512
14 × 14 × 512

7 × 7 × 512

1 × 1 × 4096

Convolution+ReLU

Max pooling

Fully connected+ReLU

Softmax

1 × 1 × 1000

112 × 112 × 128

56 × 56 × 256

224 × 224 × 64

Figure 9.8 The VGG16 architecture: note the repeated layer blocks and the pyramid-like structure of 
the feature maps



251Modern convnet architecture patterns

Deeper hierarchies are intrinsically good because they encourage feature reuse, and
therefore abstraction. In general, a deep stack of narrow layers performs better than a
shallow stack of large layers. However, there’s a limit to how deep you can stack layers,
due to the problem of vanishing gradients. This leads us to our first essential model
architecture pattern: residual connections.

9.3.2 Residual connections

You probably know about the game of Telephone, also called Chinese whispers in the
UK and téléphone arabe in France, where an initial message is whispered in the ear of a
player, who then whispers it in the ear of the next player, and so on. The final message
ends up bearing little resemblance to its original version. It’s a fun metaphor for the
cumulative errors that occur in sequential transmission over a noisy channel.

 As it happens, backpropagation in a sequential deep learning model is pretty simi-
lar to the game of Telephone. You’ve got a chain of functions, like this one:

y = f4(f3(f2(f1(x))))

On the importance of ablation studies in deep learning research
Deep learning architectures are often more evolved than designed—they were devel-
oped by repeatedly trying things and selecting what seemed to work. Much like in bio-
logical systems, if you take any complicated experimental deep learning setup,
chances are you can remove a few modules (or replace some trained features with
random ones) with no loss of performance.

This is made worse by the incentives that deep learning researchers face: by making
a system more complex than necessary, they can make it appear more interesting or
more novel, and thus increase their chances of getting a paper through the peer-
review process. If you read lots of deep learning papers, you will notice that they’re
often optimized for peer review in both style and content in ways that actively hurt
clarity of explanation and reliability of results. For instance, mathematics in deep
learning papers is rarely used for clearly formalizing concepts or deriving non-obvious
results—rather, it gets leveraged as a signal of seriousness, like an expensive suit on
a salesman.

The goal of research shouldn’t be merely to publish, but to generate reliable knowl-
edge. Crucially, understanding causality in your system is the most straightforward
way to generate reliable knowledge. And there’s a very low-effort way to look into cau-
sality: ablation studies. Ablation studies consist of systematically trying to remove
parts of a system—making it simpler—to identify where its performance actually
comes from. If you find that X + Y + Z gives you good results, also try X, Y, Z, X + Y,
X + Z, and Y + Z, and see what happens.

If you become a deep learning researcher, cut through the noise in the research pro-
cess: do ablation studies for your models. Always ask, “Could there be a simpler
explanation? Is this added complexity really necessary? Why?”



252 CHAPTER 9 Advanced deep learning for computer vision

The name of the game is to adjust the parameters of each function in the chain based
on the error recorded on the output of f4 (the loss of the model). To adjust f1, you’ll
need to percolate error information through f2, f3, and f4. However, each successive
function in the chain introduces some amount of noise. If your function chain is too
deep, this noise starts overwhelming gradient information, and backpropagation
stops working. Your model won’t train at all. This is the vanishing gradients problem.

 The fix is simple: just force each function in the chain to be nondestructive—to
retain a noiseless version of the information contained in the previous input. The eas-
iest way to implement this is to use a residual connection. It’s dead easy: just add the
input of a layer or block of layers back to its output (see figure 9.9). The residual con-
nection acts as an information shortcut around destructive or noisy blocks (such as
blocks that contain relu activations or dropout layers), enabling error gradient infor-
mation from early layers to propagate noiselessly through a deep network. This tech-
nique was introduced in 2015 with the ResNet family of models (developed by He et al.
at Microsoft).1

In practice, you’d implement a residual connection as follows.

x = ...   
residual = x   
x = block(x)     
x = add([x, residual])   

1 Kaiming He et al., “Deep Residual Learning for Image Recognition,” Conference on Computer Vision and Pat-
tern Recognition (2015), https://arxiv.org/abs/1512.03385.

Listing 9.1 A residual connection in pseudocode

Output

Residual

connection

+

Block

Input

Figure 9.9 A residual connection 
around a processing block

Some input
tensor

Save a pointer to the 
original input. This is 
called the residual.

This computation block can 
potentially be destructive or 
noisy, and that’s fine.

Add the original input to the layer’s
output: the final output will thus
always preserve full information

about the original input.

https://arxiv.org/abs/1512.03385


253Modern convnet architecture patterns

Note that adding the input back to the output of a block implies that the output
should have the same shape as the input. However, this is not the case if your block
includes convolutional layers with an increased number of filters, or a max pooling
layer. In such cases, use a 1 × 1 Conv2D layer with no activation to linearly project the
residual to the desired output shape (see listing 9.2). You’d typically use padding=
"same" in the convolution layers in your target block so as to avoid spatial downsam-
pling due to padding, and you’d use strides in the residual projection to match any
downsampling caused by a max pooling layer (see listing 9.3).

from tensorflow import keras 
from tensorflow.keras import layers
 
inputs = keras.Input(shape=(32, 32, 3))
x = layers.Conv2D(32, 3, activation="relu")(inputs)
residual = x                                         
x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)   
residual = layers.Conv2D(64, 1)(residual)      
x = layers.add([x, residual])     

inputs = keras.Input(shape=(32, 32, 3))
x = layers.Conv2D(32, 3, activation="relu")(inputs)
residual = x                           
x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)  
x = layers.MaxPooling2D(2, padding="same")(x)                   
residual = layers.Conv2D(64, 1, strides=2)(residual)   
x = layers.add([x, residual])  

To make these ideas more concrete, here’s an example of a simple convnet structured
into a series of blocks, each made of two convolution layers and one optional max
pooling layer, with a residual connection around each block:

inputs = keras.Input(shape=(32, 32, 3))
x = layers.Rescaling(1./255)(inputs)
 
def residual_block(x, filters, pooling=False):    
    residual = x
    x = layers.Conv2D(filters, 3, activation="relu", padding="same")(x)
    x = layers.Conv2D(filters, 3, activation="relu", padding="same")(x)

Listing 9.2 Residual block where the number of filters changes

Listing 9.3 Case where the target block includes a max pooling layer

Set
aside the
residual.

This is the layer around which we create
a residual connection: it increases the
number of output filers from 32 to 64.

Note that we use padding="same"
to avoid downsampling

due to padding.

The residual only had 32 
filters, so we use a 1 × 1 
Conv2D to project it to the 
correct shape.

Now the block output and the
residual have the same shape

and can be added.

Set
aside the
residual.

This is the block of two layers around which
we create a residual connection: it includes a

2 × 2 max pooling layer. Note that we use
padding="same" in both the convolution
layer and the max pooling layer to avoid

downsampling due to padding.
We use strides=2 in the residual 
projection to match the downsampling 
created by the max pooling layer.

Now the block output and the residual 
have the same shape and can be added.

Utility function to apply a 
convolutional block with a 
residual connection, with an 
option to add max pooling



254 CHAPTER 9 Advanced deep learning for computer vision

    if pooling:
        x = layers.MaxPooling2D(2, padding="same")(x)
        residual = layers.Conv2D(filters, 1, strides=2)(residual)  
    elif filters != residual.shape[-1]:
        residual = layers.Conv2D(filters, 1)(residual)   
    x = layers.add([x, residual])
    return x
 
x = residual_block(x, filters=32, pooling=True)    
x = residual_block(x, filters=64, pooling=True)     
x = residual_block(x, filters=128, pooling=False)     

x = layers.GlobalAveragePooling2D()(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.summary()

This is the model summary we get:

Model: "model" 

__________________________________________________________________________________________________

Layer (type)                    Output Shape         Param #     Connected to 

==================================================================================================

input_1 (InputLayer)            [(None, 32, 32, 3)]  0 

__________________________________________________________________________________________________

rescaling (Rescaling)           (None, 32, 32, 3)    0           input_1[0][0] 

__________________________________________________________________________________________________

conv2d (Conv2D)                 (None, 32, 32, 32)   896         rescaling[0][0] 

__________________________________________________________________________________________________

conv2d_1 (Conv2D)               (None, 32, 32, 32)   9248        conv2d[0][0]

__________________________________________________________________________________________________

max_pooling2d (MaxPooling2D)    (None, 16, 16, 32)   0           conv2d_1[0][0]

__________________________________________________________________________________________________

conv2d_2 (Conv2D)               (None, 16, 16, 32)   128         rescaling[0][0]

__________________________________________________________________________________________________

add (Add)                       (None, 16, 16, 32)   0           max_pooling2d[0][0]

                                                                 conv2d_2[0][0]

__________________________________________________________________________________________________

conv2d_3 (Conv2D)               (None, 16, 16, 64)   18496       add[0][0]

__________________________________________________________________________________________________

conv2d_4 (Conv2D)               (None, 16, 16, 64)   36928       conv2d_3[0][0]

__________________________________________________________________________________________________

max_pooling2d_1 (MaxPooling2D)  (None, 8, 8, 64)     0           conv2d_4[0][0]

__________________________________________________________________________________________________

conv2d_5 (Conv2D)               (None, 8, 8, 64)     2112        add[0][0]

__________________________________________________________________________________________________

add_1 (Add)                     (None, 8, 8, 64)     0           max_pooling2d_1[0][0]

                                                                 conv2d_5[0][0]

__________________________________________________________________________________________________

conv2d_6 (Conv2D)               (None, 8, 8, 128)    73856       add_1[0][0]

__________________________________________________________________________________________________

conv2d_7 (Conv2D)               (None, 8, 8, 128)    147584      conv2d_6[0][0]

__________________________________________________________________________________________________

If we use max 
pooling, we 
add a strided 
convolution to 
project the 
residual to the 
expected shape.

If we don’t use max 
pooling, we only project 
the residual if the 
number of channels 
has changed.

First
block

Second block; note the 
increasing filter count 
in each block.The last block doesn’t need a max

pooling layer, since we will apply
global average pooling right after it.



255Modern convnet architecture patterns

conv2d_8 (Conv2D)               (None, 8, 8, 128)    8320        add_1[0][0]

__________________________________________________________________________________________________

add_2 (Add)                     (None, 8, 8, 128)    0           conv2d_7[0][0]

                                                                 conv2d_8[0][0]

__________________________________________________________________________________________________

global_average_pooling2d (Globa (None, 128)          0           add_2[0][0]

__________________________________________________________________________________________________

dense (Dense)                   (None, 1)            129         global_average_pooling2d[0][0]

==================================================================================================

Total params: 297,697 

Trainable params: 297,697 

Non-trainable params: 0 

__________________________________________________________________________________________________

With residual connections, you can build networks of arbitrary depth, without having
to worry about vanishing gradients.

 Now let’s move on to the next essential convnet architecture pattern: batch normal-
ization. 

9.3.3 Batch normalization

Normalization is a broad category of methods that seek to make different samples seen
by a machine learning model more similar to each other, which helps the model learn
and generalize well to new data. The most common form of data normalization is one
you’ve already seen several times in this book: centering the data on zero by subtract-
ing the mean from the data, and giving the data a unit standard deviation by dividing
the data by its standard deviation. In effect, this makes the assumption that the data
follows a normal (or Gaussian) distribution and makes sure this distribution is cen-
tered and scaled to unit variance:

normalized_data = (data - np.mean(data, axis=...)) / np.std(data, axis=...)

Previous examples in this book normalized data before feeding it into models. But
data normalization may be of interest after every transformation operated by the net-
work: even if the data entering a Dense or Conv2D network has a 0 mean and unit vari-
ance, there’s no reason to expect a priori that this will be the case for the data coming
out. Could normalizing intermediate activations help?

 Batch normalization does just that. It’s a type of layer (BatchNormalization in
Keras) introduced in 2015 by Ioffe and Szegedy;2 it can adaptively normalize data even
as the mean and variance change over time during training. During training, it uses
the mean and variance of the current batch of data to normalize samples, and during
inference (when a big enough batch of representative data may not be available), it
uses an exponential moving average of the batch-wise mean and variance of the data
seen during training.

2 Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift,” Proceedings of the 32nd International Conference on Machine Learning (2015), https://
arxiv.org/abs/1502.03167.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167


256 CHAPTER 9 Advanced deep learning for computer vision

 Although the original paper stated that batch normalization operates by “reducing
internal covariate shift,” no one really knows for sure why batch normalization helps.
There are various hypotheses, but no certitudes. You’ll find that this is true of many
things in deep learning—deep learning is not an exact science, but a set of ever-
changing, empirically derived engineering best practices, woven together by unreli-
able narratives. You will sometimes feel like the book you have in hand tells you how to
do something but doesn’t quite satisfactorily say why it works: that’s because we know
the how but we don’t know the why. Whenever a reliable explanation is available, I
make sure to mention it. Batch normalization isn’t one of those cases.

 In practice, the main effect of batch normalization appears to be that it helps with
gradient propagation—much like residual connections—and thus allows for deeper
networks. Some very deep networks can only be trained if they include multiple
BatchNormalization layers. For instance, batch normalization is used liberally in
many of the advanced convnet architectures that come packaged with Keras, such as
ResNet50, EfficientNet, and Xception.

 The BatchNormalization layer can be used after any layer—Dense, Conv2D, etc.:

x = ...
x = layers.Conv2D(32, 3, use_bias=False)(x)   
x = layers.BatchNormalization()(x)

NOTE Both Dense and Conv2D involve a bias vector, a learned variable whose
purpose is to make the layer affine rather than purely linear. For instance,
Conv2D returns, schematically, y = conv(x, kernel) + bias, and Dense returns
y = dot(x, kernel) + bias. Because the normalization step will take care of
centering the layer’s output on zero, the bias vector is no longer needed
when using BatchNormalization, and the layer can be created without it via
the option use_bias=False. This makes the layer slightly leaner.

Importantly, I would generally recommend placing the previous layer’s activation after
the batch normalization layer (although this is still a subject of debate). So instead of
doing what is shown in listing 9.4, you would do what’s shown in listing 9.5.

x = layers.Conv2D(32, 3, activation="relu")(x)
x = layers.BatchNormalization()(x)

x = layers.Conv2D(32, 3, use_bias=False)(x)    
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)       

Listing 9.4 How not to use batch normalization

Listing 9.5 How to use batch normalization: the activation comes last

Because the output of the Conv2D 
layer gets normalized, the layer 
doesn’t need its own bias vector.

Note the lack of 
activation here.

We place the activation after the
BatchNormalization layer.



257Modern convnet architecture patterns

The intuitive reason for this approach is that batch normalization will center your
inputs on zero, while your relu activation uses zero as a pivot for keeping or dropping
activated channels: doing normalization before the activation maximizes the utiliza-
tion of the relu. That said, this ordering best practice is not exactly critical, so if you
do convolution, then activation, and then batch normalization, your model will still
train, and you won’t necessarily see worse results.

Now let’s take a look at the last architecture pattern in our series: depthwise separable
convolutions. 

9.3.4 Depthwise separable convolutions

What if I told you that there’s a layer you can use as a drop-in replacement for Conv2D
that will make your model smaller (fewer trainable weight parameters) and leaner
(fewer floating-point operations) and cause it to perform a few percentage points bet-
ter on its task? That is precisely what the depthwise separable convolution layer does (Sep-
arableConv2D in Keras). This layer performs a spatial convolution on each channel of
its input, independently, before mixing output channels via a pointwise convolution
(a 1 × 1 convolution), as shown in figure 9.10.

On batch normalization and fine-tuning
Batch normalization has many quirks. One of the main ones relates to fine-tuning:
when fine-tuning a model that includes BatchNormalization layers, I recommend
leaving these layers frozen (set their trainable attribute to False). Otherwise they
will keep updating their internal mean and variance, which can interfere with the very
small updates applied to the surrounding Conv2D layers.

1 × 1 conv

(pointwise conv)

Depthwise convolution:
independent spatial
convs per channel

Concatenate

Split channels

3 × 3 conv3 × 3 conv3 × 3 conv3 × 3 conv

Figure 9.10 Depthwise separable convolution: a depthwise convolution followed by a 
pointwise convolution



258 CHAPTER 9 Advanced deep learning for computer vision

This is equivalent to separating the learning of spatial features and the learning of
channel-wise features. In much the same way that convolution relies on the assump-
tion that the patterns in images are not tied to specific locations, depthwise separable
convolution relies on the assumption that spatial locations in intermediate activations
are highly correlated, but different channels are highly independent. Because this assumption
is generally true for the image representations learned by deep neural networks, it
serves as a useful prior that helps the model make more efficient use of its training
data. A model with stronger priors about the structure of the information it will have
to process is a better model—as long as the priors are accurate.

 Depthwise separable convolution requires significantly fewer parameters and
involves fewer computations compared to regular convolution, while having compara-
ble representational power. It results in smaller models that converge faster and are
less prone to overfitting. These advantages become especially important when you’re
training small models from scratch on limited data.

 When it comes to larger-scale models, depthwise separable convolutions are the
basis of the Xception architecture, a high-performing convnet that comes packaged
with Keras. You can read more about the theoretical grounding for depthwise separa-
ble convolutions and Xception in the paper “Xception: Deep Learning with Depth-
wise Separable Convolutions.”3

   

3 François Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Conference on Com-
puter Vision and Pattern Recognition (2017), https://arxiv.org/abs/1610.02357.

The co-evolution of hardware, software, and algorithms
Consider a regular convolution operation with a 3 × 3 window, 64 input channels, and
64 output channels. It uses 3*3*64*64 = 36,864 trainable parameters, and when
you apply it to an image, it runs a number of floating-point operations that is propor-
tional to this parameter count. Meanwhile, consider an equivalent depthwise separa-
ble convolution: it only involves 3*3*64 + 64*64 = 4,672 trainable parameters, and
proportionally fewer floating-point operations. This efficiency improvement only
increases as the number of filters or the size of the convolution windows gets larger.

As a result, you would expect depthwise separable convolutions to be dramatically
faster, right? Hold on. This would be true if you were writing simple CUDA or C imple-
mentations of these algorithms—in fact, you do see a meaningful speedup when run-
ning on CPU, where the underlying implementation is parallelized C. But in practice,
you’re probably using a GPU, and what you’re executing on it is far from a “simple”
CUDA implementation: it’s a cuDNN kernel, a piece of code that has been extraordi-
narily optimized, down to each machine instruction. It certainly makes sense to
spend a lot of effort optimizing this code, since cuDNN convolutions on NVIDIA hard-
ware are responsible for many exaFLOPS of computation every day. But a side effect
of this extreme micro-optimization is that alternative approaches have little chance
to compete on performance—even approaches that have significant intrinsic advan-
tages, like depthwise separable convolutions.

https://arxiv.org/abs/1610.02357


259Modern convnet architecture patterns

9.3.5 Putting it together: A mini Xception-like model

As a reminder, here are the convnet architecture principles you’ve learned so far:

 Your model should be organized into repeated blocks of layers, usually made of
multiple convolution layers and a max pooling layer.

 The number of filters in your layers should increase as the size of the spatial fea-
ture maps decreases.

 Deep and narrow is better than broad and shallow.
 Introducing residual connections around blocks of layers helps you train

deeper networks.
 It can be beneficial to introduce batch normalization layers after your convolu-

tion layers.
 It can be beneficial to replace Conv2D layers with SeparableConv2D layers,

which are more parameter-efficient.

Let’s bring these ideas together into a single model. Its architecture will resemble a
smaller version of Xception, and we’ll apply it to the dogs vs. cats task from the last
chapter. For data loading and model training, we’ll simply reuse the setup we used in
section 8.2.5, but we’ll replace the model definition with the following convnet:

Despite repeated requests to NVIDIA, depthwise separable convolutions have not
benefited from nearly the same level of software and hardware optimization as regu-
lar convolutions, and as a result they remain only about as fast as regular convolu-
tions, even though they’re using quadratically fewer parameters and floating-point
operations. Note, though, that using depthwise separable convolutions remains a
good idea even if it does not result in a speedup: their lower parameter count means
that you are less at risk of overfitting, and their assumption that channels should be
uncorrelated leads to faster model convergence and more robust representations.

What is a slight inconvenience in this case can become an impassable wall in other
situations: because the entire hardware and software ecosystem of deep learning
has been micro-optimized for a very specific set of algorithms (in particular, convnets
trained via backpropagation), there’s an extremely high cost to steering away from the
beaten path. If you were to experiment with alternative algorithms, such as gradient-
free optimization or spiking neural networks, the first few parallel C++ or CUDA
implementations you’d come up with would be orders of magnitude slower than a
good old convnet, no matter how clever and efficient your ideas were. Convincing
other researchers to adopt your method would be a tough sell, even if it were just
plain better.

You could say that modern deep learning is the product of a co-evolution process
between hardware, software, and algorithms: the availability of NVIDIA GPUs and
CUDA led to the early success of backpropagation-trained convnets, which led NVIDIA
to optimize its hardware and software for these algorithms, which in turn led to con-
solidation of the research community behind these methods. At this point, figuring
out a different path would require a multi-year re-engineering of the entire ecosystem. 



260 CHAPTER 9 Advanced deep learning for computer vision

inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs)              

x = layers.Rescaling(1./255)(x)   
x = layers.Conv2D(filters=32, kernel_size=5, use_bias=False)(x)   

for size in [32, 64, 128, 256, 512]:      
residual = x

    x = layers.BatchNormalization()(x)
    x = layers.Activation("relu")(x)
    x = layers.SeparableConv2D(size, 3, padding="same", use_bias=False)(x)
 
    x = layers.BatchNormalization()(x)
    x = layers.Activation("relu")(x)
    x = layers.SeparableConv2D(size, 3, padding="same", use_bias=False)(x)
 
    x = layers.MaxPooling2D(3, strides=2, padding="same")(x)
 
    residual = layers.Conv2D(
        size, 1, strides=2, padding="same", use_bias=False)(residual)
    x = layers.add([x, residual])
 
x = layers.GlobalAveragePooling2D()(x)      
x = layers.Dropout(0.5)(x)            
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

This convnet has a trainable parameter count of 721,857, slightly lower than the
991,041 trainable parameters of the original model, but still in the same ballpark. Fig-
ure 9.11 shows its training and validation curves.

We use the same 
data augmentation 
configuration as before.Don’t

forget
input

rescaling!

Note that the assumption that underlies
separable convolution, “feature channels are
largely independent,” does not hold for RGB
images! Red, green, and blue color channels

are actually highly correlated in natural
images. As such, the first layer in our model
is a regular Conv2D layer. We’ll start using

SeparableConv2D afterwards.

We apply a series of convolutional blocks with 
increasing feature depth. Each block consists of two 
batch-normalized depthwise separable convolution 
layers and a max pooling layer, with a residual 
connection around the entire block.

In the original model, we used a Flatten 
layer before the Dense layer. Here, we go 
with a GlobalAveragePooling2D layer.

Like in the original model, we add a 
dropout layer for regularization.

Figure 9.11 Training and validation metrics with an Xception-like architecture



261Interpreting what convnets learn

You’ll find that our new model achieves a test accuracy of 90.8%, compared to 83.5%
for the naive model in the last chapter. As you can see, following architecture best
practices does have an immediate, sizable impact on model performance!

 At this point, if you want to further improve performance, you should start system-
atically tuning the hyperparameters of your architecture—a topic we’ll cover in detail
in chapter 13. We haven’t gone through this step here, so the configuration of the pre-
ceding model is purely based on the best practices we discussed, plus, when it comes
to gauging model size, a small amount of intuition.

 Note that these architecture best practices are relevant to computer vision in gen-
eral, not just image classification. For example, Xception is used as the standard convo-
lutional base in DeepLabV3, a popular state-of-the-art image segmentation solution.4

 This concludes our introduction to essential convnet architecture best practices.
With these principles in hand, you’ll be able to develop higher-performing models
across a wide range of computer vision tasks. You’re now well on your way to becom-
ing a proficient computer vision practitioner. To further deepen your expertise,
there’s one last important topic we need to cover: interpreting how a model arrives at
its predictions. 

9.4 Interpreting what convnets learn
A fundamental problem when building a computer vision application is that of inter-
pretability: why did your classifier think a particular image contained a fridge, when all
you can see is a truck? This is especially relevant to use cases where deep learning is
used to complement human expertise, such as in medical imaging use cases. We will
end this chapter by getting you familiar with a range of different techniques for visual-
izing what convnets learn and understanding the decisions they make.

 It’s often said that deep learning models are “black boxes”: they learn representa-
tions that are difficult to extract and present in a human-readable form. Although this
is partially true for certain types of deep learning models, it’s definitely not true for
convnets. The representations learned by convnets are highly amenable to visualiza-
tion, in large part because they’re representations of visual concepts. Since 2013, a wide
array of techniques has been developed for visualizing and interpreting these repre-
sentations. We won’t survey all of them, but we’ll cover three of the most accessible
and useful ones:

 Visualizing intermediate convnet outputs (intermediate activations)—Useful for under-
standing how successive convnet layers transform their input, and for getting a
first idea of the meaning of individual convnet filters

 Visualizing convnet filters—Useful for understanding precisely what visual pattern
or concept each filter in a convnet is receptive to

4 Liang-Chieh Chen et al., “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmen-
tation,” ECCV (2018), https://arxiv.org/abs/1802.02611.

https://arxiv.org/abs/1802.02611


262 CHAPTER 9 Advanced deep learning for computer vision

 Visualizing heatmaps of class activation in an image—Useful for understanding
which parts of an image were identified as belonging to a given class, thus allow-
ing you to localize objects in images

For the first method—activation visualization—we’ll use the small convnet that we
trained from scratch on the dogs-versus-cats classification problem in section 8.2. For
the next two methods, we’ll use a pretrained Xception model.

9.4.1 Visualizing intermediate activations

Visualizing intermediate activations consists of displaying the values returned by various
convolution and pooling layers in a model, given a certain input (the output of a layer is
often called its activation, the output of the activation function). This gives a view into
how an input is decomposed into the different filters learned by the network. We want
to visualize feature maps with three dimensions: width, height, and depth (channels).
Each channel encodes relatively independent features, so the proper way to visualize
these feature maps is by independently plotting the contents of every channel as a 2D
image. Let’s start by loading the model that you saved in section 8.2:

>>> from tensorflow import keras
>>> model = keras.models.load_model(
    "convnet_from_scratch_with_augmentation.keras")
>>> model.summary()
Model: "model_1" 
_________________________________________________________________
Layer (type)                 Output Shape              Param # 
=================================================================
input_2 (InputLayer)         [(None, 180, 180, 3)]     0 
_________________________________________________________________
sequential (Sequential)      (None, 180, 180, 3)       0 
_________________________________________________________________ 
rescaling_1 (Rescaling)      (None, 180, 180, 3)       0 
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 178, 178, 32)      896 
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 89, 89, 32)        0 
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 87, 87, 64)        18496 
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 43, 43, 64)        0 
_________________________________________________________________
conv2d_7 (Conv2D)            (None, 41, 41, 128)       73856 
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 20, 20, 128)       0 
_________________________________________________________________
conv2d_8 (Conv2D)            (None, 18, 18, 256)       295168 
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 (None, 9, 9, 256)         0 
_________________________________________________________________



263Interpreting what convnets learn

conv2d_9 (Conv2D)            (None, 7, 7, 256)         590080 
_________________________________________________________________
flatten_1 (Flatten)          (None, 12544)             0 
_________________________________________________________________
dropout (Dropout)            (None, 12544)             0 
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 12545 
=================================================================
Total params: 991,041 
Trainable params: 991,041 
Non-trainable params: 0 
_________________________________________________________________

Next, we’ll get an input image—a picture of a cat, not part of the images the network
was trained on.

from tensorflow import keras 
import numpy as np
 
img_path = keras.utils.get_file(  
    fname="cat.jpg",   
    origin="https://img-datasets.s3.amazonaws.com/cat.jpg") 

def get_img_array(img_path, target_size):
    img = keras.utils.load_img(             

img_path, target_size=target_size)   
array = keras.utils.img_to_array(img)   

    array = np.expand_dims(array, axis=0)   
    return array
 
img_tensor = get_img_array(img_path, target_size=(180, 180))

Let’s display the picture (see figure 9.12).

import matplotlib.pyplot as plt
plt.axis("off")
plt.imshow(img_tensor[0].astype("uint8"))
plt.show()

In order to extract the feature maps we want to look at, we’ll create a Keras model that
takes batches of images as input, and that outputs the activations of all convolution
and pooling layers.

 

Listing 9.6 Preprocessing a single image

Listing 9.7 Displaying the test picture

Download a 
test image.

Open the image 
file and resize it.

Turn the image into a 
float32 NumPy array of 
shape (180, 180, 3).

Add a dimension to transform the array into 
a “batch” of a single sample. Its shape is now 
(1, 180, 180, 3).



264 CHAPTER 9 Advanced deep learning for computer vision

from tensorflow.keras import layers
 
layer_outputs = []
layer_names = [] 
for layer in model.layers:   
    if isinstance(layer, (layers.Conv2D, layers.MaxPooling2D)):  

layer_outputs.append(layer.output)         
layer_names.append(layer.name)    

activation_model = keras.Model(inputs=model.input, outputs=layer_outputs)  

When fed an image input, this model returns the values of the layer activations in the
original model, as a list. This is the first time you’ve encountered a multi-output
model in this book in practice since you learned about them in chapter 7; until now,
the models you’ve seen have had exactly one input and one output. This one has one
input and nine outputs: one output per layer activation.

activations = activation_model.predict(img_tensor)   

For instance, this is the activation of the first convolution layer for the cat image input:

>>> first_layer_activation = activations[0]
>>> print(first_layer_activation.shape)
(1, 178, 178, 32)

Listing 9.8 Instantiating a model that returns layer activations

Listing 9.9 Using the model to compute layer activations

Figure 9.12 The test cat picture

Extract the outputs of all
Conv2D and MaxPooling2D

layers and put them in a list.

Save the 
layer names 
for later.

Create a model that will return these
outputs, given the model input.

Return a list of nine NumPy arrays:
one array per layer activation.



265Interpreting what convnets learn

It’s a 178 × 178 feature map with 32 channels. Let’s try plotting the fifth channel of the
activation of the first layer of the original model (see figure 9.13).

import matplotlib.pyplot as plt
plt.matshow(first_layer_activation[0, :, :, 5], cmap="viridis")

This channel appears to encode a diagonal edge detector—but note that your own
channels may vary, because the specific filters learned by convolution layers aren’t
deterministic.

 Now, let’s plot a complete visualization of all the activations in the network (see fig-
ure 9.14). We’ll extract and plot every channel in each of the layer activations, and
we’ll stack the results in one big grid, with channels stacked side by side.

images_per_row = 16 
for layer_name, layer_activation in zip(layer_names, activations):  
    n_features = layer_activation.shape[-1]   
    size = layer_activation.shape[1]   
    n_cols = n_features // images_per_row
    display_grid = np.zeros(((size + 1) * n_cols - 1,  
                             images_per_row * (size + 1) - 1))
    for col in range(n_cols):
        for row in range(images_per_row):
            channel_index = col * images_per_row + row
            channel_image = layer_activation[0, :, :, channel_index].copy() 

Listing 9.10 Visualizing the fifth channel

Listing 9.11 Visualizing every channel in every intermediate activation

Figure 9.13 Fifth channel of the 
activation of the first layer on the 
test cat picture

Iterate over the activations (and the
names of the corresponding layers).

The layer activation has shape 
(1, size, size, n_features).

Prepare an empty 
grid for displaying 
all the channels in 
this activation.

This is a single channel (or feature).



266 CHAPTER 9 Advanced deep learning for computer vision

if channel_image.sum() != 0:                       
channel_image -= channel_image.mean()                       
channel_image /= channel_image.std()                        

                channel_image *= 64                       
                channel_image += 128                        
            channel_image = np.clip(channel_image, 0, 255).astype("uint8")  
            display_grid[
                col * (size + 1): (col + 1) * size + col,            
                row * (size + 1) : (row + 1) * size + row] = channel_image  
    scale = 1. / size   
    plt.figure(figsize=(scale * display_grid.shape[1],   
                        scale * display_grid.shape[0]))   

plt.title(layer_name)   
plt.grid(False)   

    plt.axis("off")   
    plt.imshow(display_grid, aspect="auto", cmap="viridis")   

Normalize channel
values within the

[0, 255] range. All-
zero channels are

kept at zero.

Place the
channel

matrix in the
empty grid

we prepared. Display the 
grid for the 
layer.

Figure 9.14 Every channel 
of every layer activation on 
the test cat picture



267Interpreting what convnets learn

There are a few things to note here:

 The first layer acts as a collection of various edge detectors. At that stage, the
activations retain almost all of the information present in the initial picture.

 As you go deeper, the activations become increasingly abstract and less visually
interpretable. They begin to encode higher-level concepts such as “cat ear” and
“cat eye.” Deeper presentations carry increasingly less information about the
visual contents of the image, and increasingly more information related to the
class of the image.

 The sparsity of the activations increases with the depth of the layer: in the first
layer, almost all filters are activated by the input image, but in the following lay-
ers, more and more filters are blank. This means the pattern encoded by the fil-
ter isn’t found in the input image.

We have just evidenced an important universal characteristic of the representations
learned by deep neural networks: the features extracted by a layer become increas-
ingly abstract with the depth of the layer. The activations of higher layers carry less
and less information about the specific input being seen, and more and more infor-
mation about the target (in this case, the class of the image: cat or dog). A deep neu-
ral network effectively acts as an information distillation pipeline, with raw data going in
(in this case, RGB pictures) and being repeatedly transformed so that irrelevant infor-
mation is filtered out (for example, the specific visual appearance of the image), and
useful information is magnified and refined (for example, the class of the image).

 This is analogous to the way humans and animals perceive the world: after observ-
ing a scene for a few seconds, a human can remember which abstract objects were
present in it (bicycle, tree) but can’t remember the specific appearance of these
objects. In fact, if you tried to draw a generic bicycle from memory, chances are you
couldn’t get it even remotely right, even though you’ve seen thousands of bicycles in
your lifetime (see, for example, figure 9.15). Try it right now: this effect is absolutely
real. Your brain has learned to completely abstract its visual input—to transform it

Figure 9.15 Left: attempts to draw a bicycle from memory. Right: what a 
schematic bicycle should look like.



268 CHAPTER 9 Advanced deep learning for computer vision

into high-level visual concepts while filtering out irrelevant visual details—making it
tremendously difficult to remember how things around you look. 

9.4.2 Visualizing convnet filters

Another easy way to inspect the filters learned by convnets is to display the visual pat-
tern that each filter is meant to respond to. This can be done with gradient ascent in
input space : applying gradient descent to the value of the input image of a convnet so as
to maximize the response of a specific filter, starting from a blank input image. The
resulting input image will be one that the chosen filter is maximally responsive to.

 Let’s try this with the filters of the Xception model, pretrained on ImageNet. The
process is simple: we’ll build a loss function that maximizes the value of a given filter
in a given convolution layer, and then we’ll use stochastic gradient descent to adjust
the values of the input image so as to maximize this activation value. This will be our
second example of a low-level gradient descent loop leveraging the GradientTape
object (the first one was in chapter 2).

 First, let’s instantiate the Xception model, loaded with weights pretrained on the
ImageNet dataset.

model = keras.applications.xception.Xception(
    weights="imagenet",
    include_top=False)     

We’re interested in the convolutional layers of the model—the Conv2D and Separa-
bleConv2D layers. We’ll need to know their names so we can retrieve their outputs.
Let’s print their names, in order of depth.

for layer in model.layers:
    if isinstance(layer, (keras.layers.Conv2D, keras.layers.SeparableConv2D)):
        print(layer.name)

You’ll notice that the SeparableConv2D layers here are all named something like
block6_sepconv1, block7_sepconv2, etc. Xception is structured into blocks, each
containing several convolutional layers.

 Now, let’s create a second model that returns the output of a specific layer—a fea-
ture extractor model. Because our model is a Functional API model, it is inspectable: we
can query the output of one of its layers and reuse it in a new model. No need to copy
the entire Xception code.

 
 
 

Listing 9.12 Instantiating the Xception convolutional base

Listing 9.13 Printing the names of all convolutional layers in Xception

The classification layers are irrelevant 
for this use case, so we don’t include 
the top stage of the model.



269Interpreting what convnets learn

layer_name = "block3_sepconv1"  
layer = model.get_layer(name=layer_name)   
feature_extractor = keras.Model(inputs=model.input, outputs=layer.output)   

To use this model, simply call it on some input data (note that Xception requires
inputs to be preprocessed via the keras.applications.xception.preprocess_input
function).

activation = feature_extractor(
keras.applications.xception.preprocess_input(img_tensor)

)

Let’s use our feature extractor model to define a function that returns a scalar value
quantifying how much a given input image “activates” a given filter in the layer. This is
the “loss function” that we’ll maximize during the gradient ascent process:

import tensorflow as tf
 
def compute_loss(image, filter_index):   
    activation = feature_extractor(image)
    filter_activation = activation[:, 2:-2, 2:-2, filter_index]  
    return tf.reduce_mean(filter_activation)  

Listing 9.14 Creating a feature extractor model

Listing 9.15 Using the feature extractor

The difference between model.predict(x) and model(x)
In the previous chapter, we used predict(x) for feature extraction. Here, we’re
using model(x). What gives?

Both y = model.predict(x) and y = model(x) (where x is an array of input data)
mean “run the model on x and retrieve the output y.” Yet they aren’t exactly the
same thing.

predict() loops over the data in batches (in fact, you can specify the batch size via
predict(x, batch_size=64)), and it extracts the NumPy value of the outputs. It’s
schematically equivalent to this:

def predict(x):
    y_batches = []
    for x_batch in get_batches(x):

You could replace this with the name of any
layer in the Xception convolutional base. This is the layer 

object we’re 
interested in.

We use model.input and layer.output to create a model that,
given an input image, returns the output of our target layer.

The loss function takes an image 
tensor and the index of the filter 
we are considering (an integer).

Note that we avoid border artifacts by only involving
non-border pixels in the loss; we discard the first

two pixels along the sides of the activation.

Return the mean of the activation 
values for the filter.



270 CHAPTER 9 Advanced deep learning for computer vision

Let’s set up the gradient ascent step function, using the GradientTape. Note that we’ll
use a @tf.function decorator to speed it up.

 A non-obvious trick to help the gradient descent process go smoothly is to normal-
ize the gradient tensor by dividing it by its L2 norm (the square root of the average of
the square of the values in the tensor). This ensures that the magnitude of the
updates done to the input image is always within the same range.

@tf.function 
def gradient_ascent_step(image, filter_index, learning_rate):
    with tf.GradientTape() as tape:
        tape.watch(image)   

loss = compute_loss(image, filter_index)   
grads = tape.gradient(loss, image)    
grads = tf.math.l2_normalize(grads)    
image += learning_rate * grads   

    return image  

Now we have all the pieces. Let’s put them together into a Python function that takes
as input a layer name and a filter index, and returns a tensor representing the pattern
that maximizes the activation of the specified filter.

img_width = 200 
img_height = 200 
 

(continued)
        y_batch = model(x).numpy()
        y_batches.append(y_batch)
    return np.concatenate(y_batches)

This means that predict() calls can scale to very large arrays. Meanwhile,
model(x) happens in-memory and doesn’t scale. On the other hand, predict() is
not differentiable: you cannot retrieve its gradient if you call it in a GradientTape
scope.

You should use model(x) when you need to retrieve the gradients of the model call,
and you should use predict() if you just need the output value. In other words,
always use predict() unless you’re in the middle of writing a low-level gradient
descent loop (as we are now).

Listing 9.16 Loss maximization via stochastic gradient ascent

Listing 9.17 Function to generate filter visualizations

Explicitly watch the image tensor, since it isn’t a TensorFlow Variable 
(only Variables are automatically watched in a gradient tape). Compute the loss 

scalar, indicating 
how much the 
current image 
activates the 
filter.

Compute the gradients 
of the loss with respect 
to the image.

Apply the “gradient 
normalization trick.”

Move the image a little
bit in a direction that

activates our target
filter more strongly.

Return the updated image
so we can run the step

function in a loop.



271Interpreting what convnets learn

def generate_filter_pattern(filter_index):
    iterations = 30   
    learning_rate = 10.     
    image = tf.random.uniform(
        minval=0.4,
        maxval=0.6,
        shape=(1, img_width, img_height, 3))   
    for i in range(iterations):                                          

image = gradient_ascent_step(image, filter_index, learning_rate)  
    return image[0].numpy()

The resulting image tensor is a floating-point array of shape (200, 200, 3), with val-
ues that may not be integers within [0, 255]. Hence, we need to post-process this ten-
sor to turn it into a displayable image. We do so with the following straightforward
utility function.

def deprocess_image(image):
    image -= image.mean()    
    image /= image.std()   
    image *= 64   
    image += 128   
    image = np.clip(image, 0, 255).astype("uint8")  
    image = image[25:-25, 25:-25, :]   
    return image

Let’s try it (see figure 9.16):

>>> plt.axis("off")
>>> plt.imshow(deprocess_image(generate_filter_pattern(filter_index=2)))

Listing 9.18 Utility function to convert a tensor into a valid image

Number of gradient 
ascent steps to applyAmplitude

of a single
step

Initialize an image tensor 
with random values (the 
Xception model expects 
input values in the [0, 1] 
range, so here we pick a 
range centered on 0.5).

Repeatedly update the values of the image
tensor so as to maximize our loss function.

Normalize image 
values within the 
[0, 255] range.

Center crop to avoid 
border artifacts.

Figure 9.16 Pattern that the second 
channel in layer block3_sepconv1 
responds to maximally



272 CHAPTER 9 Advanced deep learning for computer vision

It seems that filter 0 in layer block3_sepconv1 is responsive to a horizontal lines pat-
tern, somewhat water-like or fur-like.

 Now the fun part: you can start visualizing every filter in the layer, and even every
filter in every layer in the model.

all_images = []   
for filter_index in range(64):
    print(f"Processing filter {filter_index}")
    image = deprocess_image(
        generate_filter_pattern(filter_index)
    )
    all_images.append(image)
 
margin = 5    
n = 8 
cropped_width = img_width - 25 * 2 
cropped_height = img_height - 25 * 2 
width = n * cropped_width + (n - 1) * margin
height = n * cropped_height + (n - 1) * margin
stitched_filters = np.zeros((width, height, 3))
 
for i in range(n):    
    for j in range(n):
        image = all_images[i * n + j]
        stitched_filters[
            row_start = (cropped_width + margin) * i
            row_end = (cropped_width + margin) * i + cropped_width
            column_start = (cropped_height + margin) * j
            column_end = (cropped_height + margin) * j + cropped_height

            stitched_filters[
                row_start: row_end,
                column_start: column_end, :] = image
 
keras.utils.save_img(    
    f"filters_for_layer_{layer_name}.png", stitched_filters)

These filter visualizations (see figure 9.17) tell you a lot about how convnet layers see
the world: each layer in a convnet learns a collection of filters such that their inputs can
be expressed as a combination of the filters. This is similar to how the Fourier transform
decomposes signals onto a bank of cosine functions. The filters in these convnet filter
banks get increasingly complex and refined as you go deeper in the model:

 The filters from the first layers in the model encode simple directional edges
and colors (or colored edges, in some cases).

 The filters from layers a bit further up the stack, such as block4_sepconv1,
encode simple textures made from combinations of edges and colors.

 The filters in higher layers begin to resemble textures found in natural images:
feathers, eyes, leaves, and so on. 

Listing 9.19 Generating a grid of all filter response patterns in a layer

Generate and save 
visualizations for 
the first 64 filters 
in the layer.

Prepare a blank canvas for us to 
paste filter visualizations on.

Fill the picture with 
the saved filters.

Save the 
canvas to disk.



273Interpreting what convnets learn

9.4.3 Visualizing heatmaps of class activation

We’ll introduce one last visualization technique—one that is useful for understanding
which parts of a given image led a convnet to its final classification decision. This is
helpful for “debugging” the decision process of a convnet, particularly in the case of a
classification mistake (a problem domain called model interpretability). It can also allow
you to locate specific objects in an image.

 This general category of techniques is called class activation map (CAM) visualiza-
tion, and it consists of producing heatmaps of class activation over input images. A

Figure 9.17 Some filter patterns for layers block2_sepconv1, block4_sepconv1, 
and block8_sepconv1



274 CHAPTER 9 Advanced deep learning for computer vision

class activation heatmap is a 2D grid of scores associated with a specific output class,
computed for every location in any input image, indicating how important each loca-
tion is with respect to the class under consideration. For instance, given an image fed
into a dogs-versus-cats convnet, CAM visualization would allow you to generate a heat-
map for the class “cat,” indicating how cat-like different parts of the image are, and
also a heatmap for the class “dog,” indicating how dog-like parts of the image are.

 The specific implementation we’ll use is the one described in an article titled “Grad-
CAM: Visual Explanations from Deep Networks via Gradient-based Localization.”5

 Grad-CAM consists of taking the output feature map of a convolution layer, given
an input image, and weighing every channel in that feature map by the gradient of
the class with respect to the channel. Intuitively, one way to understand this trick is to
imagine that you’re weighting a spatial map of “how intensely the input image acti-
vates different channels” by “how important each channel is with regard to the class,”
resulting in a spatial map of “how intensely the input image activates the class.”

 Let’s demonstrate this technique using the pretrained Xception model.

model = keras.applications.xception.Xception(weights="imagenet")   

Consider the image of two African elephants shown in figure 9.18, possibly a mother
and her calf, strolling on the savanna. Let’s convert this image into something the Xcep-
tion model can read: the model was trained on images of size 299 × 299, preprocessed
according to a few rules that are packaged in the keras.applications.xception
.preprocess_input utility function. So we need to load the image, resize it to 299 × 299,
convert it to a NumPy float32 tensor, and apply these preprocessing rules.

img_path = keras.utils.get_file(
    fname="elephant.jpg",
    origin="https://img-datasets.s3.amazonaws.com/elephant.jpg")   

def get_img_array(img_path, target_size):
    img = keras.utils.load_img(img_path, target_size=target_size)  

array = keras.utils.img_to_array(img)  
    array = np.expand_dims(array, axis=0)  

array = keras.applications.xception.preprocess_input(array)  
    return array

img_array = get_img_array(img_path, target_size=(299, 299))

5 Ramprasaath R. Selvaraju et al., arXiv (2017), https://arxiv.org/abs/1610.02391.

Listing 9.20 Loading the Xception network with pretrained weights

Listing 9.21 Preprocessing an input image for Xception

Note that we include the densely connected classi-
fier on top; in all previous cases, we discarded it.

Download the image and store it
locally under the path img_path.

Return a Python Imaging Library
(PIL) image of size 299 × 299.

Return
a float32

NumPy array
of shape

(299, 299, 3).

Add a dimension to transform the array 
into a batch of size (1, 299, 299, 3).

Preprocess the batch (this does
channel-wise color normalization).

https://arxiv.org/abs/1610.02391


275Interpreting what convnets learn

You can now run the pretrained network on the image and decode its prediction vec-
tor back to a human-readable format:

>>> preds = model.predict(img_array)
>>> print(keras.applications.xception.decode_predictions(preds, top=3)[0])
[("n02504458", "African_elephant", 0.8699266),
 ("n01871265", "tusker", 0.076968715),
 ("n02504013", "Indian_elephant", 0.02353728)]

The top three classes predicted for this image are as follows:

 African elephant (with 87% probability)
 Tusker (with 7% probability)
 Indian elephant (with 2% probability)

Figure 9.18 Test picture of African elephants



276 CHAPTER 9 Advanced deep learning for computer vision

The network has recognized the image as containing an undetermined quantity of
African elephants. The entry in the prediction vector that was maximally activated is
the one corresponding to the “African elephant” class, at index 386:

>>> np.argmax(preds[0])
386 

To visualize which parts of the image are the most African-elephant–like, let’s set up
the Grad-CAM process.

 First, we create a model that maps the input image to the activations of the last
convolutional layer.

last_conv_layer_name = "block14_sepconv2_act" 
classifier_layer_names = [
    "avg_pool",
    "predictions",
]
last_conv_layer = model.get_layer(last_conv_layer_name)
last_conv_layer_model = keras.Model(model.inputs, last_conv_layer.output)

Second, we create a model that maps the activations of the last convolutional layer to
the final class predictions.

classifier_input = keras.Input(shape=last_conv_layer.output.shape[1:])
x = classifier_input 
for layer_name in classifier_layer_names:
    x = model.get_layer(layer_name)(x)
classifier_model = keras.Model(classifier_input, x)

Then we compute the gradient of the top predicted class for our input image with
respect to the activations of the last convolution layer.

import tensorflow as tf
 
with tf.GradientTape() as tape:
    last_conv_layer_output = last_conv_layer_model(img_array) 

tape.watch(last_conv_layer_output)                         
preds = classifier_model(last_conv_layer_output)  

    top_pred_index = tf.argmax(preds[0])     
top_class_channel = preds[:, top_pred_index]     

grads = tape.gradient(top_class_channel, last_conv_layer_output)  

Listing 9.22 Setting up a model that returns the last convolutional output

Listing 9.23 Reapplying the classifier on top of the last convolutional output

Listing 9.24 Retrieving the gradients of the top predicted class

Compute activations of the last conv
layer and make the tape watch it.

Retrieve the activation 
channel corresponding to 
the top predicted class.

This is the gradient of the top predicted class with regard
to the output feature map of the last convolutional layer.



277Interpreting what convnets learn

Now we apply pooling and importance weighting to the gradient tensor to obtain our
heatmap of class activation.

pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)).numpy()   
last_conv_layer_output = last_conv_layer_output.numpy()[0]
for i in range(pooled_grads.shape[-1]):   

last_conv_layer_output[:, :, i] *= pooled_grads[i]   
heatmap = np.mean(last_conv_layer_output, axis=-1)   

For visualization purposes, we’ll also normalize the heatmap between 0 and 1. The
result is shown in figure 9.19.

heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
plt.matshow(heatmap)

Finally, let’s generate an image that superimposes the original image on the heatmap
we just obtained (see figure 9.20).

import matplotlib.cm as cm
 
img = keras.utils.load_img(img_path)  
img = keras.utils.img_to_array(img)   

Listing 9.25 Gradient pooling and channel-importance weighting

Listing 9.26 Heatmap post-processing

Listing 9.27 Superimposing the heatmap on the original picture

This is a vector where each entry is the mean intensity of the
gradient for a given channel. It quantifies the importance of

each channel with regard to the top predicted class.

Multiply each channel 
in the output of the last 
convolutional layer by 
“how important this 
channel is.”The channel-wise mean of the resulting feature

map is our heatmap of class activation.

Figure 9.19 Standalone class 
activation heatmap

Load the 
original image.



278 CHAPTER 9 Advanced deep learning for computer vision

heatmap = np.uint8(255 * heatmap)   

jet = cm.get_cmap("jet")                 
jet_colors = jet(np.arange(256))[:, :3]   
jet_heatmap = jet_colors[heatmap]         

jet_heatmap = keras.utils.array_to_img(jet_heatmap)             
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))  
jet_heatmap = keras.utils.img_to_array(jet_heatmap)             

superimposed_img = jet_heatmap * 0.4 + img                   
superimposed_img = keras.utils.array_to_img(superimposed_img) 

save_path = "elephant_cam.jpg"     
superimposed_img.save(save_path)   

Rescale the
heatmap to

the range
0–255.

Use the "jet" colormap 
to recolorize the 
heatmap.

Create an image 
that contains the 
recolorized heatmap.

Superimpose the 
heatmap and the 
original image, 
with the heatmap 
at 40% opacity.

Save the superimposed 
image.

Figure 9.20 African elephant class activation heatmap over the test picture



279Summary

This visualization technique answers two important questions:

 Why did the network think this image contained an African elephant?
 Where is the African elephant located in the picture?

In particular, it’s interesting to note that the ears of the elephant calf are strongly acti-
vated: this is probably how the network can tell the difference between African and
Indian elephants. 

Summary
 There are three essential computer vision tasks you can do with deep learning:

image classification, image segmentation, and object detection.
 Following modern convnet architecture best practices will help you get the

most out of your models. Some of these best practices include using residual
connections, batch normalization, and depthwise separable convolutions.

 The representations that convnets learn are easy to inspect—convnets are the
opposite of black boxes!

 You can generate visualizations of the filters learned by your convnets, as well as
heatmaps of class activity.


